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Abstract: This paper proposes three extensions of the Wave Propagation Method (WPM)
to optimize run times. The optimizations apply to homogeneous symmetric and inhomo-
geneous symmetric systems. They are neither based on approximations nor increase the
memory consumption of the basic algorithm. Such run time optimizations are important
to shorten product development cycles where a high number of parameter variations need
to be investigated to find optimal solutions. Today, massively parallel implementations are
first choice to reduce run times while single-thread algorithms still show potential to be
optimized. This paper focuses on the optimization of the single-thread implementation of
the scalar unidirectional WPM. The proposed optimizations achieve their run time reduc-
tions from symmetries in the spatial frequency domain and spatial index domain. Many
problems provide such spatial symmetries or sections of free-space propagation through
homogeneous medium so that the optimizations have practical relevance. The paper shows
that the optimizations can significantly reduce run times of the single-thread implementa-
tion for such types of problems. To show the general potential of the optimizations and not
limit the applicability to selected examples, run times and accuracy are analysed for sim-
ulations of random homogeneous symmetric and inhomogeneous symmetric systems that
are traversed by random Gaussian beams. The benchmarking is performed for a variation of
the grid size and performance is compared to the single-thread and a massively parallel im-
plementation of the standard algorithm. The results show that the optimizations reduce run
times by a factor of 10 up to over 1000 dependent on the characteristics of the system. The
proposed optimizations are on-demand and apply on-the-fly, show no loss of accuracy, ex-
ecute in-place and do not consume additional memory. They do not depend on the number
of different refractive index and are applicable to systems that change their characteristics
during simulation. © 2021 The Author(s)

1. Introduction

Run time and memory consumption are two key indicators for the performance of algorithms. The performance of
algorithms is important for the development of photonic devices because thousands of simulations on variations in
device parameters are required to find the optimal solution. Such simulations usually contain homogeneities and
symmetries that can be used to optimize the simulator performance. Such symmetries typically exist for waveg-
uides, tapers, splitters, couplers, gratings, lenses or free-space propagation between lenses. It is therefore highly
desirable to reduce run times and reduce or limit memory consumption during simulations wherever possible. As
hardware speeds increase through parallelization and hardware costs reduce due to mass production and general
availability, the optimization of single-thread performance tends to be neglected. But even well known and deeply
investigated algorithms often contain the potential to improve single-thread performance. This paper focuses on
the single-thread performance of the three-dimensional WPM. It provides three types of optimizations to improve
run times without any cost in terms of memory consumption or accuracy.

The contribution of this paper is an optimized single-thread implementation of the WPM for homogeneous
symmetric and inhomogeneous symmetric systems. The optimizations achieve run time improvements by a factor
10 to 500, which is to say that at least up to 10 times as many simulations can be performed at the same time
if the system shows spatial symmetries. The optimizations retain the accuracy and extend the original algorithm,
perform an efficient grid analysis and apply on-the-fly and do not consume additional memory. The optimizations
are introduced for three-dimensional systems and uni-directional propagation to show the basic concepts. But the
proposed principles of optimization affect the propagation scheme of the WPM so that they are also applicable
to bidirectional propagation or vector waves. The paper is also a comfortable starting point for engineers who are



new in the field of optical Fourier simulators because it provides the basic theory and implementation examples to
start quickly and adapt the code to individual needs.

Beam propagation methods have been primarily used for simulation of light propagation in waveguides. By
application of a propagation operator, derived from the slowly varying envelope approximation of the Helmholtz
equation, propagation methods are typically restricted to forward propagation and the paraxial regime. In the
original BPM scheme by Feit and Fleck [1], the propagation operator was split into two operators, a homogenous
medium propagation in the averaged index and a thin element transmission through the index variation. Due
to this operator splitting an additional restriction to small index variations was introduced. With the application
of propagation methods to more general optical components, such as gradient index media, aspheric lenses and
gratings, there is much interest in removing these restrictions. The BPM was improved and extended in various
directions. A wide-angular BPM has been introduced by Sharma and Agrawal in [2] or Hadley in [3] to enable
the BPM for non-paraxial propagation. Changbao presented a three-dimensional wide-angular BPM in [4] for
optical waveguide structures. A semivectorial wide angular BPM was presented by Lee in [5]. The BPM was
extended to very-wide angles in [6] but the error that depends on the separation of the propagation operator is still
persistent in those methods. Several vector extensions of the BPM have been presented by Yamauchi [7], Liu [8]
and [9]. Yamauchi introduced a modified semivectorial beam propagation method retaining the longitudinal field
component, Liu published the analysis of polarized modes of rib waveguides with a semivectorial BPM and Perez
presented a fully-vectorial three-dimensional extension of the BPM. A third class of extensions is based on the
finite element (FE) approach as published by Tsui [10], Stern [11], Pinheiro [12] and Obayya [13]. The FE-based
extensions of the BPM are optimized for scalar, semivectorial and full-vectorial fields as well as numerically
efficient methods in the order of citation. The fourth and last class of extensions in this brief overview of BPM-
based methods is the multigrid approach that is used to reduce computational effort at regions in a system that
allow a reduced degree of accuracy. Sewell has introduced a multigrid method for electromagnetic computation
in [14]. The BPM was subject to various optimizations in the field of innovative optical simulation methods,
but except for the Padé approximation in [3] none of the BPM-based approaches overcomes the limitation that
originate from the separation of the operators.

The wave propagation method (WPM) has been introduced by Brenner and Singer in 1993 [15] in order to
overcome the two major limitations of the BPM, the restrictions to paraxial propagation and the limitation to
small index vatiations. Instead of splitting the propagation operator into two parts, the WPM decomposes a field
distribution into its plane wave components and performs a non-paraxial plane-wave propagation in an inhomoge-
nous medium for each plane wave component. The field in the next step is then calculated as a sum over all
plane wave components. Since this sum cannot be performed in an FFT-operation, the calculation time of the
three-dimensional WPM grows with O(N4) whereas the three-dimensional BPM calculation time utilizing FFT
and inverse FFT is proportional to O(N2), taking N as the number of spatial samples. In [15], the accuracy of
the scalar WPM was validated for propagation angles up to 85 degrees and also for index steps greater than 1.
With the WPM, the application range could be significantly extended. It has been used for light propagation in
gradient index lenses and in commercial software [19] for the calculation of aspheric lenses. Since the original
WPM also extended the angular range significantly, the WPM has been extended in 2009 to vector waves with the
VWPM by Fertig and Brenner [16] and in 2011 to three-dimensional bidirectional propagation of vector waves
by Fertig [17]. In 2017, Brenner proposed a high-speed version of the WPM for systems with a small number
of different refractive indice [18] and homogeneous regions in the aperture. With this version a speedup of up to
40000 was achieved for selected system configurations and the complexity reduced from O(n4) to O(n2).

The paper is organized in five sections. Section 2 explains the original scalar WPM algorithm and introduces
the nomenclature used in this paper. The run time optimizations are introduced in section 3. There, the stan-
dard algorithm is extended by four individual steps: ’GridAnalysis’ (3.1), ’HomogOpt’ (3.2), ’FreqOpt’ (3.3) and
’SpatOpt’ (3.4). The optimizations are incrementally benchmarked in section 4. They are analysed with the origi-
nal unidirectional scalar algorithm [15] because the proposed optimizations rely on spatial frequency symmetries
and symmetric index distributions. The vector [16] or bidirectional [17] versions would siginficantly increase the
introduction without being an advantage for the verification. Section 4.3 investigates the improvements for homo-
geneous symmetric and section 4.4 for inhomogeneous symmetric systems. All benchmarking is performed with
random Gaussian beams and random homogeneous symmetric and random inhomogeneous symmetric systems
to show the general applicability of the approach. The benchmarking performs on variations of the grid size and
provides run times as well as cycle counts to allow performance comparisons with systems running at different
clock speeds. CPU single thread timing breakdown and GPU kernel timing breakdowns are shown in sections 4.3
and 4.4.



2. Wave Propagation Method

A discretized three-dimensional system is defined by a spatial refractive index distribution n(i, j, l) where x =
i ·4x, y = j ·4x and z = l ·4z is the position defined by the index −nx/2 ≤ i ≤ nx/2, −n/y/2 ≤ j ≤ ny/2 and
0≤ l ≤ nz−2. The system has an aperture X ·Y = nx ·4x ·ny ·4y and a length Z = nz ·4x. A layer in the xy-plane
of such a system is called homogeneous if the refractive index distribution n(i, j) = const ∀ i, j and symmetric in
two dimensions if n(nx−1− i, j) = n(i,ny−1− j) = n(nx−1− i,nx−1− j) = n(i, j). The entire system is called
homogeneous if n = const ∀ i, j, l.

The WPM algorithm computes the electromagnetic field distribution of a complex harmonic wave propagating
along an axis of propagation, i.e. the z-axis in this paper. The x-axis and y-axis are lateral axes and, together with
the z-axis, span an orthogonal cartesian coordinate system. The system is split into nz layers parallel to the xy-
plane. Each xy-plane parallel is defined by nx ·ny samples. The nx ·ny ·nz samples span the simulation grid of size
(nx ·4x) · (ny ·4y) · (nz ·4z) = X ·Y ·Z.4x and4y are obtained from X/nx and Y/ny where X ·Y is the aperture
area. The WPM iterates the z-axis for nz steps and computes the field distribution in layer l + 1 from the field
distribution in layer l. The electric field in a layer l is El and the refractive index distribution is nl .

2.1. Plane wave decomposition (’FFT’)

The WPM is a Fourier method as it derives the spatial field distribution at Eiz+1 from the plane wave decomposition
or plane wave spectrum el of layer El . The spectrum is obtained from a Fourier Transformation F { }

el(k⊥) = F {El(r⊥)} (1)

where F { } is the two-dimensional Fourier transformation and r⊥ = (x y)T is the lateral vector in space. k⊥ =
(kx ky)

T is the lateral spatial frequency vector with −0.5/4x≤ kx < 0.5/4x and −0.5/4y≤ ky < 0.5/4y.

2.1.1. Spatial frequency normalization and sign modulation

Due to the symmetries of the Fourier transformation, each plane wave amplitude el(k⊥) has to be multiplied by
a factor (−1)p+q [15]. p and q are integer numbers in the range −nx/2 ≤ p < nx/2 and −ny/2 ≤ q < ny/2 with
kx = p/X and ky = q/Y . If the Fourier transformation does not normalize by (nx ·ny) the factor has to be expanded
to (−1)p+q/(nx ·ny).

2.2. Amplitude transformation and phase shift (’WPM-Loops’)

While propagating a distance4z = Z/nz through layer l+1, each plane wave component el+1(k⊥) experiences a
phase shift φl+1(r⊥,k⊥) = kz,l+1(r⊥,k⊥) ·4z, where kz,l+1 = sqrt{k2

l+1(r⊥,k⊥)−k2
⊥} is the z-component of the

propagation vector k = (kx ky kz)
T in layer l + 1. kl+1(r⊥) = nl+1(r⊥) · k0 is the wave number in layer l + 1. In

contrast to the Split-Step-Propagation scheme [1] the wave numer is not derived from an average refractive index.

kz,l+1(r⊥,k⊥) =

√
(nl+1(r⊥) · k0)

2−k2
⊥ (2)

where k0 = 2π/λ0 and λ0 is the wavelength of the incident wave at (l · 4z) = z = 0 is E(x,y,0) = 1 ·
exp{j · r⊥ ·k⊥}. Here, a unit amplitude is assumed for simplicity but without prejudice to the generality. In case
of a constant refractive index the absolute of the amplitude remains unchanged.

2.2.1. Amplitude transformation

The electromagnetic wave crosses a boundary if the average refractive index in layers l and l+1 are different, i.e.
nl(r⊥) 6= nl+1(r⊥). In this case the z-components of the propagation vector experiences a change, i.e. kz,l 6= kz,l+1
and the amplitudes el(k⊥) transform to fl+1(k⊥) according to the Fresnel coefficients of amplitude

tte(r⊥,k⊥) =
2 · kz,l(r⊥,k⊥)

kz,l(r⊥,k⊥)+ kz,l+1(r⊥,k⊥)
(3)

fl+1(r⊥,k⊥) = tte(r⊥,k⊥) · el(k⊥) (4)

for TE-polarized waves. The analysis in this paper is focused on TE-polarized waves without effect on the pro-
posed optimizations. tte = 1 if kz,l = kz,l+1 or nl(r⊥) = nl+1(r⊥). In the worst case, (nx · ny) different Fresnel
numbers need to be calculated for one layer iteration l to l +1.



2.2.2. Space-dependent phase shift

The transmitted amplitude of each plane wave component fl+1 propagates a distance 4z through layer l +1 and
experiences a phase shift φz,l+1(r⊥,k⊥) = kz,l+1(r⊥,k⊥) ·4z. The plane wave component is then

el+1(r⊥,k⊥) = fl+1 · ejφz,l+1 · ej·(k⊥·r⊥) = fl+1 · ejφz,l+1 · ej·φ⊥ = fl+1 · ejφl+1 (5)

where φz,l+1 is the longitudinal, φ⊥ = r⊥ ·k⊥ is the lateral and φk+1 = φz,k+1 +φ⊥ is the total phase shift in layer
l +1. ’WPM-Loops’ is finished after (n2

x ·n2
y) iterations when all plane wave components ek experienced a space-

and frequency-dependent transformation. An implementation of the unidirectional scalar WPM can be found in
Appendix.

2.2.3. Evanescent modes

Evanescent modes are obtained for k2 ≤ k2
⊥. They are not further discussed in this paper as the proposed optimiza-

tions are applicable to those modes without modification. Evanescent modes are automatically considered by a
complex propagation vector as shown in [17].

2.3. Superpostition of plane wave components

The WPM cannot benefit from an inverse FFT as for example the BPM [1] because fl+1 is space- and frequency-
dependent. The field distribution in the space-domain is obtained from a superposition of space- and spatial
frequency-dependent components

El+1(r⊥) =
∫
r⊥

∫
k⊥

tte(r⊥,k⊥) ·

F (El(r⊥))︷ ︸︸ ︷
ek(k⊥)︸ ︷︷ ︸

fl+1(r⊥,k⊥)

·ej·kz,l+1·4z · ejk⊥·r⊥︸ ︷︷ ︸
ej(φz+φ⊥)

dk⊥ dr⊥ =
∫
r⊥

∫
k⊥

fl+1(r⊥,k⊥) · ejφ dk⊥ dr⊥ (6)

This expression is the foundation for the ’HomogOpt’ and ’SpatOpt’ optimizations.

2.4. Spatial phase error and run time complexity

Due to a superposition of space- and frequency-dependent plane wave components the WPM provides exact
optical path differences 4n ·4r for all plane wave components. There is no phase error as with the Split-Step-
Propagation scheme and so no phase correction is required. Due to this difference in the propagation scheme,
the complexity of the Split-Step-Propagation scheme is in O(nx · ny)+O(nx · ny) = 2 ·O(nx · ny) ∈ O(n2) while
the complexity of the Wave-Propagation scheme is in O((nx · ny)

2) = O(n4). This makes run time optimizations
highly desirable.

3. Run time optimizations

The run time optimizations in this paper utilize symmetries in the spatial frequency vector (’FreqOpt’), symmetries
in the spatial index distribution (’SpatOpt’) and homogeneities (’HomogOpt’). In this context homogeneous layers
are interpreted a special form of symmetry in the spatial refractive index distribution, where the index is constant.

3.1. Symmetry and homogeneity analysis (’Grid Analysis’)

The optimizations require a layer analysis step, called ’GridAnalysis’ in this paper, to investigate for symmetric
and homogeneous layers. Listing 2 shows an efficient way to perform a two-dimensional grid analysis in two
half-range loops. With the WPM there is no need to calculate an average refractive index and so ’GridAnalysis’ is
an additional step of calculation. An implementation of ’GridAnalysis’ can be found in Appendix.

3.2. Optimization from homogeneous layers (’HomogOpt’)

In case of homogeneous layers, tte(r⊥,k⊥) becomes tte(k⊥), kz(r⊥,k⊥) becomes a space-independent kz(k⊥) and
equation 6 reduces to an inverse Fourier Transformation

E(r⊥) =
∫
r⊥

∫
k⊥

tte(k′⊥) · eiz(k′⊥)︸ ︷︷ ︸
fl+1(k′⊥)

·ejφ dk′⊥ dr′⊥ = nx ·ny ·
∫

k⊥

fl+1(k′⊥) · ejφz · ejk′⊥·r⊥ dk′⊥ = F−1
{

fl+1(k⊥) · ejφz
}
(7)

because all space-dependent components now depend on a constant refractive index and thereby become indepen-
dent of space. φz becomes independent from space and the WPM reduces to the Plane-Wave-Spectrum (PWS).
The complexity of the PWS is in O(n2), where n is the number of samples in the aperture. An implementation of
’HomogOpt’ can be found in Appendix.



3.3. Optimization from symmetries in the spatial frequency vector (’FreqOpt’)

The spatial frequency vector k is symmetric around the zero frequency k⊥ = (0 0)T , i.e. perpendicular propa-
gation as shown in table 1. The three-dimensional propagation vector k = (kx ky kz)

T derives from its transveral
components kx and ky and the wave number kl+1, where

kx(p) =
p

nx ·4x
=

p
X

, −nx

2
≤ p <

nx

2
(8)

ky(q) =
q

ny ·4y
=

q
Y

, −
ny

2
≤ q <

ny

2
(9)

Table 1 shows the symmetries in kx and ky for nx = ny = 8. There’s a two-dimensional symmetry for 1 ≤ p ≤
nx/2−1 and 1≤ q≤ ny/2−1 (called ’2D’ in this paper) and one-dimensional symmetries for p = 0 or p = nx/2
and 1≤ q≤ ny/2−1 (called ’1DX’) and q= 0 or q= nx/2 and 1≤ p≤ nx/2−1 (called ’1DY’) due to the situation
that zero and minimum frequencies have no counterpart with opposite sign. The four edge frequencies occur only
once and have no symmetries (called ’NO’). ’FreqOpt’ uses a special scheme to address all these situations with a
low number of if-clauses.

kx[0] kx[1] ... kx[3] kx[4] kx[5] ... kx[7]

ky[0] (0,0) (1/X,0/Y) ... (3/X,0/Y) (-4/X,0/Y) (−kx[3],0/Y) ... (-1/X,0/Y)
ky[1] (0/X,1/Y) (1/X,1/Y) ... (3/X,1/Y) (-4/X,1/Y) (−kx[3],1/Y) ... (−kx[1],1/Y)
ky[2] (0/X,2/Y) (1/X,2/Y) ... (3/X,2/Y) (-4/X,2/Y) (−kx[3],2/Y) ... (−kx[1],2/Y)
ky[3] (0/X,3/Y) (1/X,3/Y) ... (3/X,3/Y) (-4/X,3/Y) (−kx[3],3/Y) ... (−kx[1],3/Y)
ky[4] (0,-4/Y) (1/X,-4/Y) ... (3/X,-4/Y) (-4/X,-4/Y) (−kx[3],-4/Y) ... (−kx[1],-4/Y)
ky[5] (0/X,−ky[3]) (1/X,−ky[3]) ... (3/X,−ky[3]) (-4/X,−ky[3]) (−kx[3],−ky[3]) ... (−kx[1],−ky[3])
ky[5] (0/X,−ky[2]) (1/X,−ky[2]) ... (3/X,−ky[2]) (-4/X,−ky[2]) (−kx[3],−ky[2]) ... (−kx[1],−ky[2])
ky[7] (0/X,−ky[1]) (1/X,−ky[1]) ... (3/X,−ky[1]) (-4/X,−ky[1]) (−kx[3],−ky[1]) ... (−kx[1],−ky[1])

Table 1. Symmetries in the two-dimensional spatial frequency vector for nx = ny = 8.

Expression 6 then transforms to

E(r⊥) =
∫
r⊥

∫
k⊥

fl+1(r′⊥,k
′
⊥) · ejφ dk′⊥ dr′⊥ =

∫
r⊥

k+⊥∫
0⊥

fl+1(r′⊥,±k′⊥) · ejφ dk′⊥ dr′⊥ (10)

where k+
⊥ are the positive lateral spatial frequencies and the zero frequency is k⊥ = (x y)T = (0 0)T = 0⊥. ±k′⊥

is in the limits and derived from k+
⊥ as described in the following sections. The reduction rate for the number

of iterations depends on the grid size as shown in figure 1. A maximum improvement factor up to four can be
expected for ’FreqOpt’.

3.3.1. ’2D’ symmetric frequencies (4-fold symmetry)

are obtained for 1≤ i≤ nx/2−1 and 1≤ j ≤ ny/2−1 and provide two-dimensional symmetries

k2
⊥(nx− p,ny−q) = k2

⊥(nx− p,q) = k2
⊥(p,ny−q) = k2

⊥(p,q) (11)

so that the z-component of the propagation vector k2
z is k2 − k2

⊥(p,q) with k2
⊥(p,q) = k2

x(p) + k2
y(q) and k =

nl+1(r⊥) ·k0. The number of frequencies in this bucket is and determined by the number of samples in the aperture,
i.e. n2D = 4 · (nx/2−1) · (ny/2−1). The number of iterations reduce by a factor four for these frequencies.

3.3.2. ’1DX’ symmetric frequencies (2-fold symmetry)

are obtained for 1≤ p≤ nx/2−1 and q = 0 or q = ny/2 and provide one-dimensional symmetries

k2
⊥(nx− p,q) = k2

⊥(p,q) (12)

so that the z-component of the propagation vector k2
z is k2−k2

⊥(p,0) or k2−k2
⊥(p,ny/2), where k = nl+1(r⊥) ·k0.

The number of frequencies in this bucket is determined by the number of samples in the aperture, i.e. n1DX =

2 · (2 · (nx/2−1)). The number of iterations reduce by a factor two for these frequencies.



Fig. 1. Number of spatial frequency iterations with ’FreqOpt’ n f (left axis) and reduction factor
n f /(nx ·ny) (right axis) over aperture size from theory.

3.3.3. ’1DY’ symmetric frequencies (2-fold symmetry)

are obtained for 1≤ q≤ nx/2−1 and p = 0 or p = nx/2 and provide a one-dimensional symmetries

k2
⊥(p,ny−q) = k2

⊥(p,q) (13)

so that the z-component of the propagation vector k2
z is k2− k2

⊥(0,q) or k2− k2
⊥(nx/2,q), where k = nl+1(r⊥) · k0.

The number of frequencies in this bucket is determined by the number of samples in the aperture, i.e. n1DY =

2 · (2 · (ny/2−1)). The number of iterations reduce by a factor two for these frequencies.

3.3.4. ’NO’ symmetric frequencies

are obtained for all combinations of p ∈ {0,nx/2} and q ∈
{

0,ny/2
}

and provide no symmetries so that four
individual z-components of the propagation vector are required. The z-component of the propagation vector k2

z is
k2− k2

⊥(0,0), k2− k2
⊥(0,ny/2), k2− k2

⊥(nx/2,0) or k2− k2
⊥(nx/2,ny/2), where k = nl+1(r⊥) · k0. This number of

frequencies is constant nNO = 4 and independent from the number of samples in the aperture.

3.3.5. Total number of spatial frequencies with ’FreqOpt’

The total number of frequencies in the four buckets with ’FreqOpt’ is

n f = n2D +n1DX +n1DY +nNO (14)

This is the number of iterations on the two-dimensonal spatial frequency vector with ’FreqOpt’. Figure 1 shows n f
over the number of samples in the aperture (nx ·ny) for ’NoOpt’ and ’FreqOpt’ and the reduction factor compared
to ’NoOpt’ n f /(nx ·ny). The figure shows that the improvement saturates at a factor four for larger grids and that
the improvement for small grids is lower. But even for small grids of size 4x4 the reduction of iterations is a factor
of ≈ 1.8. For the maximum aperture size in this paper of 256x256 the reduction factor for ’FreqOpt’ is expected
to be 3.94.

3.4. Optimization from symmetries in the spatial refractive index distribution (’SpatOpt’)

Symmetries in the spatial index distribution do not always exist and need to be detected layer by layer. This
is performed by ’GridAnalysis’ in two nested a half-range loops. If symmetries in the spatial refractive index
distribution exist, equation 5 becomes

φz,l+1(±r⊥,k⊥) = φz,l+1(±x,±y,kx,ky) =4z ·
√

n2
l+1(±x,±y) · k2

0− (k2
x + k2

y) (15)

where ±x is indexed by i and (nx−1− i) and ±y is indexed by j and (ny−1− j) if the point of symmetry is the
center of the aperture. The number of iterations thereby reduce by a factor four from (nx · ny) to (nx/2) · (ny/2),



which is the expected run time improvemenent for ’SpatOpt’. An implementation of ’SpatOpt’ can be found in
Appendix. The half-cycle loops are only executed in case of spatial symmetries in the x- and y-axis but a one-
dimensional half-cycle execution is possible if symmetries in just one of the lateral axes occurs thereby reducing
the run time by a factor two. This paper focuses on two-dimensional symmetries because the highest run time
improvement can be expected. In combination with ’FreqOpt’ equation 15 changes to

φz,l+1(±r⊥,±k⊥) = φz,l+1(±x,±y,±kx,±ky) =
√

n2
l+1(±x,±y) · k2

0−
(
±k2

x +±k2
y
)
·4z (16)

where ±kx and ±ky are symmetric spatial frequencies as shown in sections 3.3.1 to 3.3.3. The spatial frequencies
in section 3.3.4 are treated as in the standard algorithm. In combination with ’FreqOpt’ expression 10 transforms
to

E(r⊥) =
∫
r⊥

k+⊥∫
0⊥

fl+1(r′⊥,±k′⊥) · ejφ dk′⊥ dr′⊥ =

r+⊥∫
0⊥

k+⊥∫
0⊥

fl+1(±r′⊥,±k′⊥) · ejφ dk′⊥ dr′⊥ (17)

where r+⊥ are the positive spatial locations in the aperture −X/2 ≤ y < X/2 and −Y/2 ≤ x < Y/2. The center
position in the aperture is obtained for r⊥ = (x y)T = (0 0)T = 0⊥. A maximum improvement factor of four can
be expected for ’SpatOpt’.

4. Benchmarking

The optimizations are analysed with two types of constrained random performance benchmarks. Each type of
benchmark is constrained so that random homogeneous symmetric and random inhomogeneous symmetric sys-
tems are traversed by Gaussian beams exp(r2/σ2 + j ·k · r) with unity amplitude and wavelengths 500nm≤ λ ≤
1500nm. The Gaussian beam has a waist σ = λ , vertical incidence and is positioned in the center of the aperture,
i.e. r0 = 1/2 · (X Y 0)T . The aperture size is X ·Y = (4λ )2 and Z = nz ·4z with4z =4x =4y and nz = 4. nz is
assigned a small number because it is relevant for the improvements and to keep memory consumption and overall
benchmarking run times small.

Each benchmark simulates on grid sizes from 8x8x4 to 256x256x4 samples. The aperture grid size is doubled in
each axis per grid iteration and six different grid sizes are analysed. 120 runs are performed per level of optimiza-
tion and 720 runs in total. The levels of optimization are ’NoOpt’, which is the original WPM algorithm ( [15],
code:1), ’HomogOpt’ (sec:3.2, code:3), ’HomogOpt+FreqOpt’ (sec:3.3, code:4) and ’FreqOpt+SpatOpt’ (sec:3.4,
code:5). The benchmarks report on run times and speedup factors over levels of optimization and grid sizes as
well as accuracy.

4.1. Implementation

The optimized codes are shown in the Appendix. The program code contains all levels of optimization and decides
for the appropriate optimization on layer granularity based on ’GridAnalysis’ during simulation. ’HomogOpt’
and ’SpatOpt’ are mutually exclusive optimizations that benefit both from ’FreqOpt’. All optimizations thereby
extend but not replace the original algorithm. The code can simulate all types of systems and is not limited to
homogeneous symmetric and inhomogeneous asymmetric systems. ’GridAnalysis’ is applied for every iteration
0 ≤ l < nz− 2 to detect homogeneous or inhomogeneous symmetric layers and trigger the appropriate level of
optimization. Iterations on l are limited to nz− 2 because every iteration calculates the field in layer l + 1 from
layer l and the last memory index is nz−1. This yields a total number of nz−1 iterations. ’FreqOpt’ is applicable
to all types of systems because symmetries in the spatial frequencies are independent. The benchmarks run on a
CPU with 2.1 GHz and on a GPU with 1.13 GHz clock frequency. The program code is single-threaded to focus
on the optimizations. To average-out occasional run time glitches from task switches or other interruptions of the
operating system, all run times are average values, obtained from 10 runs per grid size and level of optimization.

4.2. Accuracy and memory consumption

All optimizations are benchmarked against the standard program code shown in the Appendix. The maximum
tolerance in the relative error of the field distribition is defined to 0.001 percent per sample, i.e. −50dB. This
accuracy is achieved for all runs. All optimizations perform in-place and require no additional memory. Individual
simulations utilize memory for the complex-valued electric field and refractive index, i.e. 4 · (nx ·ny ·nz) ·4 Bytes
for IEEE single precision and 4 · (nx ·ny ·nz) ·8 Bytes for IEEE double precision floating point numbers.

4.3. Homogeneous symmetric systems

Figure 2 (left) shows run times and speedup factors from benchmarking homogeneous symmetric systems. The x-
axis shows the number of samples on a linear scale and the left y-axis the run time in milliseconds on a logarithmic



Fig. 2. Run time and speedup factor over system grid size for homogeneous symmetric systems.

scale (base 10). The right y-axis shows the speedup factor on a linear scale. Solid lines indicate run times and are
read against the left y-axis while dashed lines indicate speedup factors and are read against the right y-axis. Results
are shown for all levels of optimizations and the GPU runs. The GPU runs do not apply any optimization. The run
times are given in milliseconds and the speedup factors of a level of optimization are derived from the run time
for the level of optimization over the run time for ’NoOpt’. Figure 2 (right) shows the thread and kernel timing
breakdown for one iteration of a level of optimization. The latencies are plotted in milliseconds on a logscale axis.

Figure 2 (left) shows that the run times for homogeneous symmetric systems reduce significantly with ’Ho-
mogOpt’. This is expected because expression 6 reduces to expression 7 so that four nested loops over dk′⊥dr′⊥
reduce to two nested loops over dk′⊥ and the complexity changes from O(n4) to O(n2). The graphs for ’NoOpt’
and ’HomogOpt’ or ’HomogOpt+FreqOpt’ show a three order of magnitude difference for large grids. A corre-
sponding speedup factor of up to 1288 is achieved with the single-thread code. All speedup factors for the three
levels of optimization are in a similar range and show a similar trend while ’HomogOpt+FreqOpt’ shows the best
single-thread performance as expected. ’HomogOpt’ is the main contributor to this improvement.

Figure 2 (right) depicts the timing breakdown of an iteration for the simulation of an homogeneous symmetric
system of size 256x256x4. It shows that ’GridAnalysis’ requires six percent of the latency, ’FFT’ takes 24 percent,
’WPM-Loops’ takes 49 percent for ’HomogOpt’, 17 percent for ’HomogOpt+FreqOpt’ and 16 percent for ’Ho-
mogOpt+FreqOpt+SpatOpt’. The drop from 17 to 16 percent is caused by the higher latency for ’GridAnalysis’
and a constant latency for ’WPM-Loops’. ’IFFT’ takes 21 percent. In summary forward and inverse Fourier trans-
formation consume 45 percent and ’WPM-Loops’ up to 50 percent of the latency. Approximately five percent is
required for ’GridAnalysis’.

The massively parallel implementation of the WPM shows remarkable performance and a speedup up to four
orders of magnitude is achieved. The difference in run times between single-thread and massively parallel imple-
mentation is one order of magnitude or below for the grid sizes under investigation. The difference is smaller for
small grids.

4.4. Inomogeneous symmetric systems

Figure 3 shows the run times and speedup factors from benchmarking inhomogeneous symmetric systems (left)
as well as thread and kernel timing breakdowns (right). The figure has the same structure as figure 2.

Figure 3 (left) shows that ’HomogOpt’ cannot improven run times in case of inhomogeneous symmetric layers
as expected. The run times for ’HomogOpt’ are slightly higher as for ’NoOpt’ because ’GridAnalysis’ is applied
and the speedup are below one. Run times reduce with ’FreqOpt+HomogOpt’ and a speedup up to 3.6 is achieved.
This corresponds well with the analysis in figure 1. Run times further reduce with ’FreqOpt+SpatOpt’ and a total
single-thread speedup up to 10 is achieved. The theoretic limit of four for ’FreqOpt’ times four for ’SpatOpt’ is
not achieved due to ’GridAnalysis’ and an expensive memory index arithmetic as well as several if-else clauses
needed to retain the full applicability of the implementation to all types of systems.

Figure 3 (right) depicts the timing breakdown of an iteration for the simulation of an inhomogeneous symmet-
ric system of size 256x256x4. It shows that ’GridAnalysis’ requires 0.03 percent of the latency, ’FFT’ takes 0.08
percent and ’WPM-Loops’ take 99.8 percent for ’HomogOpt+FreqOpt+SpatOpt’. The latencies for ’GridAnaly-
sis’ and ’FFT’ are negligible. Run time for ’WPM-Loops’ increases by 13 percent for ’HomogOpt’, reduces by



Fig. 3. Run time and speedup factor over system grid size (left) and CPU thread timing breakdown
over level of optimization plus GPU kernel timing breakdown (right) for inhomogeneous symmetric
systems.

59 percent for ’HomogOpt+FreqOpt’ and by 90 percent for ’HomogOpt+FreqOpt+SpatOpt’ when compared to
’NoOpt’.

The massively parallel implementation is again significantly faster than the single-thread implementation as
expected because the GPU implementation allows to assign a compute core to every sample on the grid.

5. Conclusions

The paper demonstrates that the WPM can be optimized in-place and without loss of accuracy. The proposed
optimizations apply to homogeneous and inhomogeneous symmetric systems dynamically on layer basis. They are
suitable for apertures that change characteristics during simulation, e.g. from electro-optic, thermic or mechanic
effects.

The single-thread optimization for homogeneous symmetric (sub-)systems (3.2) reduce the complexity of the
original three-dimensional WPM algorithm from O(n4) to O(n2).

The single-thread optimization for symmetries in the spatial frequency vector (3.3) reduces run times up to a
factor four for all types of apertures.

The single-thread optimization for symmetries in the refractive index distribution (3.4) reduce run times by a
factor four for inhomogeneous symmetric apertures.

The speedup factors of the single-thread optimizations scale exponentially with the aperture size and achieve
a maximum speedup of over 1000 for homogeneous, 10 for inhomogeneous symmetric and up to 4 for all other
types of apertures.

The latency for a two-dimensional on-the-fly ’GridAnalysis’ consumes up to six percent of the performance
when combined with the proposed optimizations for symmetric homogeneous system and is negligible when
combined with the proposed optimizations for inhomogeneous symmetric apertures.

The maximum speed-up factor from theory for ’FreqOpt+SpatOpt’ is not reached due to intensive memory
indexing arithmetics as shown in code listings 4 and 5 for ’FreqOpt’ and ’SpatOpt’ and several if-clauses needed
to retain the full applicability to all types of apertures.

The WPM algorithm shows excellent performance on a GPU. A speedup of four orders of magnitude are easily
achieved when compared to the original single-thread algorithm and three orders of magnitude when compared to
the proposed single-thread optimizations for homogeneous symmetric and of one order of magnitude for inhomo-
geneous symmetric systems.

The proposed optimizations are independent from a number of individual refractive indice or the size of ho-
mogeneous regions in the aperture and thereby cannot outperform the high-speed WPM presented in [18]. The
proposed optimizations apply to all types of homogeneous symmetric or inhomogeneous symmetric systems.

Disclosures The author declares no conflicts of interest.
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APPENDIX

Implemementation of the scalar ’Wave Propagation Method’

0 f o r ( i n t q =0; q<ny ; q ++) { / / s p a t i a l f r e q u e n c y ( y )
1 f o r ( i n t p =0; p<nx ; p ++) { / / s p a t i a l f r e q u e n c y ( x )
2 f o r ( i n t j =0 ; j<ny ; j ++) { / / s p a c e f r e q u e n c y ( y )
3 f o r ( i n t i =0 ; i<nx ; i ++) { / / s p a c e f r e q u e n c y ( x )
4 kxy sq = pow (KX[ p ] , 2 ) +pow (KY[ q ] , 2 ) ; / / f r e q u e n c y−d e p e n d e n t
5 n i k 0 s q = pow (N[ i , j , k ]* k0 , 2 ) ; / / space−d e p e n d e n t
6 n t k 0 s q = pow (N[ i , j , k +1]* k0 , 2 ) ; / / space−d e p e n d e n t
7 i f ( ( kxy sq>=n i k 0 s q ) | | ( kxy sq>=n t k 0 s q ) ) c o n t i n u e ; / / s k i p e v a n e s c e n t modes
8 k z t =one * s q r t ( n t k 0 s q−kxy sq ) ; / / space− & f r e q u e n c y−d e p e n d e n t
9 i f ( n i a v e != n t a v e ) {

10 k z i =one * s q r t ( n i k 0 s q−kx sq ) ;
11 E [ i , j , k +1] = 2* k z i * k z t / ( k z i + k z t ) * e [ i , j , k ] * exp ( i o n e * k z t * dz ) ;
12 } e l s e {
13 E [ i , j , k +1] = e [ i , j , k ] * exp ( i o n e * k z t * dz ) ;
14} } } }

Listing 1. Base algorithm of the three-dimensional scalar Wave Propagation Method.

Implementation of ’gridAnalysis’



0 c o n s t i n t n x h a l f = i n t ( c e i l ( d ou b l e ( nx / 2 ) ) ) , n y h a l f = i n t ( c e i l ( do ub l e ( ny / 2 ) ) ) ;
1 i n t k o f f s e t = ( k +1) *nxy ;
2 do ub l e n i a v e = N[ k o f f s e t −nxy ] . r e a l ( ) , n t a v e = N[ k o f f s e t ] . r e a l ( ) ;
3 i s h o m o g i = i s h o m o g t ; i s h o m o g t = t r u e ;
4 i s s y m m e t r i c i = i s s y m m e t r i c t ; i s s y m m e t r i c t = t r u e ;
5 f o r ( i n t i y =0; iy<n y h a l f ; i y ++){
6 j o f f s e t 0 1 = k o f f s e t + j *nx ;
7 j o f f s e t 2 3 = k o f f s e t +( ny−1− j ) *nx ;
8 f o r ( i n t i x =0; i<n x h a l f ; i x ++){
9 i j i d x 0 = j o f f s e t 0 1 + i ; i j i d x 1 = j o f f s e t 0 1 +nx−1− i ;

10 i j i d x 2 = j o f f s e t 2 3 + i ; i j i d x 3 = j o f f s e t 2 3 +nx−1− i ;
11 i f ( N[ i j i d x 0 ] . r e a l ( ) !=N[ i j i d x 1 ] . r e a l ( ) | |
12 N[ i j i d x 0 ] . r e a l ( ) !=N[ i j i d x 2 ] . r e a l ( ) | |
13 N[ i j i d x 0 ] . r e a l ( ) !=N[ i j i d x 3 ] . r e a l ( ) ) {
14 i s s y m m e t r i c t = f a l s e ; i s h o m o g t = f a l s e ; b r e a k ;
15 } e l s e
16 i f ( n t a v e !=N[ i j i d x 0 ] . r e a l ( ) ) i s h o m o g t = f a l s e ;
17 i f (0== k )
18 i f ( N[ i j i d x 0 −nxy ] . r e a l ( ) !=N[ i j i d x 1 −nxy ] . r e a l ( ) | |
19 N[ i j i d x 0 −nxy ] . r e a l ( ) !=N[ i j i d x 2 −nxy ] . r e a l ( ) | |
20 N[ i j i d x 0 −nxy ] . r e a l ( ) !=N[ i j i d x 3 −nxy ] . r e a l ( ) ) {
21 i s s y m m e t r i c i = f a l s e ; i s h o m o g i = f a l s e ; b r e a k ;
22 } e l s e
23 i f ( n i a v e !=N[ i j i d x 0 −nxy ] . r e a l ( ) ) i s h o m o g i = f a l s e ;
24 } / / i x
25 i f ( ( 0 ! = k ) && ( f a l s e == i s s y m m e t r i c t ) ) b r e a k ;
26 } / / i y

Listing 2. ’gridAnalysis’ for a two-dimensional aperture.

Implementation of ’HomogOpt’

0 i f ( i s h o m o g i && i s h o m o g t ) {
1 n t a v e k 0 = n t a v e *k0 ;
2 n t a v e k 0 s q = pow ( n t a v e k 0 , 2 ) ;
3 i f ( n i a v e == n t a v e ) { n i a v e k 0 = n t a v e k 0 ;
4 n i a v e k 0 s q = n t a v e k 0 s q ; }
5 e l s e { n i a v e k 0 = n i a v e *k0 ;
6 n i a v e k 0 s q = pow ( n i a v e k 0 , 2 ) ; }
7 f o r ( i n t q =0; q<ny ; q ++) {
8 q o f f s e t = q*nx ;
9 f o r ( i n t p =0; p<nx ; p ++) {

10 p q i d x = q o f f s e t +p ;
11 i f ( (0== p ) && (0== q ) ) k z t = n t a v e k 0 ;
12 e l s e { kxy sq = pow (KX[ p ] . r e a l ( ) , 2 ) + pow (KY[ q ] . r e a l ( ) , 2 ) ;
13 tmp = n t a v e k 0 s q−kxy sq ;
14 i s e v a n e s c e n t t = tmp<=0;
15 i f ( d o e v a n e s c e n t m o d e s | | ! i s e v a n e s c e n t t )
16 k z t = ( i s e v a n e s c e n t t ) ? i o n e * s q r t ( −tmp ) : one * s q r t ( tmp ) ;
17 e l s e { e [ p q i d x ] = z e r o ; c o n t i n u e ; } }
18 i f ( n i a v e == n t a v e ) e [ p q i d x ] = e [ p q i d x ] * exp ( i d z * k z t ) ;
19 e l s e { tmp = n i a v e k 0 s q−kxy sq ;
20 i s e v a n e s c e n t i = tmp<=0;
21 i f ( d o e v a n e s c e n t m o d e s | | ! i s e v a n e s c e n t i ) {
22 k z i = ( i s e v a n e s c e n t i ) ? i o n e * s q r t ( −tmp ) : one * s q r t ( tmp ) ;
23 f r e s n e l = ( i s TE ) ? f r e s n e l T T E ( kz i , k z t ) : f resnelTTM ( n i a v e , n t a v e , kz i , k z t ) ;
24 e [ p q i d x ] = ( f r e s n e l * e [ p q i d x ] ) * exp ( i d z * k z t ) ;
25 } e l s e { e [ p q i d x ] = z e r o ; c o n t i n u e ; } }
26 } }

Listing 3. ’HomogOpt’ optimization for a two-dimensional aperture.

Implementation of ’FreqOpt’

0 f o r ( i n t q =0; q<=n y h a l f ; q ++) {
1 q o f f s e t 0 1 = q*nx ; q o f f s e t 2 3 = ( ny−q ) *nx ;
2 f o r ( i n t p =0; p<=n x h a l f ; p ++) {
3 p q i d x 0 = q o f f s e t 0 1 +p ; p q i d x 1 = q o f f s e t 0 1 +( nx−p ) ;
4 p q i d x 2 = q o f f s e t 2 3 +p ; p q i d x 3 = q o f f s e t 2 3 +( nx−p ) ;
5 i s c e n t e r = ( (0<q ) && ( n y h a l f>q ) && (0<p ) && ( n x h a l f>p ) ) ;
6 i s b o u n d x = ( 0 ! = p && n x h a l f != p ) ;
7 i s b o u n d y = ( 0 ! = q && n y h a l f != q ) ;



8 i f ( (0== p ) && (0== q ) ) k z t = n t a v e k 0 ;
9 e l s e { kxy sq = pow (KX[ p ] . r e a l ( ) , 2 ) + pow (KY[ q ] . r e a l ( ) , 2 ) ;

10 tmp = n t a v e k 0 s q−kxy sq ;
11 i s e v a n e s c e n t t = tmp<=0;
12 i f ( d o e v a n e s c e n t m o d e s | | ! i s e v a n e s c e n t t )
13 k z t = ( i s e v a n e s c e n t t ) ? i o n e * s q r t ( −tmp ) : one * s q r t ( tmp ) ;
14 e l s e { i f ( i s c e n t e r ) { e [ p q i d x 0 ] = z e r o ; e [ p q i d x 1 ] = z e r o ;
15 e [ p q i d x 2 ] = z e r o ; e [ p q i d x 3 ] = z e r o ; }
16 e l s e { e [ p q i d x 0 ] = z e r o ;
17 i f ( i s o u t e r p ) e [ p q i d x 1 ] = z e r o ;
18 i f ( i s o u t e r q ) e [ p q i d x 2 ] = z e r o ; }
19 c o n t i n u e ; } }
20 i f ( n i a v e == n t a v e ) ctmp = exp ( i d z * k z t ) ;
21 e l s e { tmp = n i a v e k 0 s q−kxy sq ;
22 i s e v a n e s c e n t i = ( tmp<=0) ;
23 i f ( d o e v a n e s c e n t m o d e s | | ! i s e v a n e s c e n t i ) {
24 k z i = ( i s e v a n e s c e n t i ) ? i o n e * s q r t ( −tmp ) : one * s q r t ( tmp ) ;
25 ctmp = ( i s TE ) ? f r e s n e l T T E ( kz i , k z t ) * exp ( i d z * k z t ) :
26 f resnelTTM ( n i a v e , n t a v e , kz i , k z t ) * exp ( i d z * k z t ) ; }
27 e l s e { i f ( i s c e n t e r ) { e [ p q i d x 0 ] = z e r o ; e [ p q i d x 1 ] = z e r o ;
28 e [ p q i d x 2 ] = z e r o ; e [ p q i d x 3 ] = z e r o ; }
29 e l s e { e [ p q i d x 0 ] = z e r o ;
30 i f ( i s b o u n d x ) e [ p q i d x 1 ] = z e r o ;
31 i f ( i s b o u n d y ) e [ p q i d x 2 ] = z e r o ; }
32 c o n t i n u e ; } }
33 i f ( i s i n n e r p q ) { e [ p q i d x 0 ] = e [ p q i d x 0 ] * ctmp ; e [ p q i d x 1 ] = e [ p q i d x 1 ] * ctmp ;
34 e [ p q i d x 2 ] = e [ p q i d x 2 ] * ctmp ; e [ p q i d x 3 ] = e [ p q i d x 3 ] * ctmp ; }
35 e l s e { e [ p q i d x 0 ] = e [ p q i d x 0 ] * ctmp ;
36 i f ( i s b o u n d x ) e [ p q i d x 1 ] = e [ p q i d x 1 ] * ctmp ;
37 i f ( i s b o u n d y ) e [ p q i d x 2 ] = e [ p q i d x 2 ] * ctmp ; }
38 } } / / p , q ( f r e q )

Listing 4. Implementation of ’FreqOpt’ for a two-dimensional spatial frequency vector.

Implementation of ’SpatOpt’

0i f ( i s s y m m e t r i c i && i s s y m m e t r i c t ) {
1 f o r ( i n t q =0; q<=n y h a l f ; q ++){
2 f o r ( i n t p =0; p<=n x h a l f ; p ++){
3 / / d e f i n e p q i d x 0 . . 3 same as i n ’ FreqOpt ’ l i s t i n g
4 s i g n = ( ( p+q ) %2) ? −1:1;
5 f o r ( i n t j =0 ; j<n y h a l f ; j ++) {
6 j o f f s e t 0 1 = k o f f s e t + j *nx ; j o f f s e t 2 3 = k o f f s e t +( ny−1− j ) *nx ;
7 f o r ( i n t i =0 ; i<n x h a l f ; i ++) {
8 i j i d x 0 = j o f f s e t 0 1 + i ; i j i d x 1 = j o f f s e t 0 1 +nx−1− i ;
9 i j i d x 2 = j o f f s e t 2 3 + i ; i j i d x 3 = j o f f s e t 2 3 +nx−1− i ;

10 n tk0 = N[ i j i d x 0 ]* k0 ; n ik0 = N[ i j i d x 0 −nxy ]* k0 ;
11 i f ( (0== p ) && (0== q ) ) { k z i = n ik0 ; k z t = n tk0 ;
12 i s e v a n e s c e n t i = f a l s e ; i s e v a n e s c e n t t = f a l s e ; }
13 e l s e { kxy sq = pow (KX[ p ] , 2 ) + pow (KY[ q ] , 2 ) ;
14 n i k 0 s q = pow ( nik0 , 2 ) ;
15 i s e v a n e s c e n t i = ( kxy sq >= n i k 0 s q ) ? t r u e : f a l s e ;
16 i f ( i s e v a n e s c e n t i && ! d o e v a n e s c e n t m o d e s ) c o n t i n u e ;
17 n t k 0 s q = pow ( ntk0 , 2 ) ;
18 i s e v a n e s c e n t t = ( kxy sq >= n t k 0 s q ) ? t r u e : f a l s e ;
19 i f ( i s e v a n e s c e n t t && ! d o e v a n e s c e n t m o d e s ) c o n t i n u e ;
20 k z i = ( i s e v a n e s c e n t i ) ? i o n e * s q r t ( kxy sq − n i k 0 s q ) :
21 one * s q r t ( n i k 0 s q − kxy sq ) ;
22 k z t = ( i s e v a n e s c e n t t ) ? i o n e * s q r t ( kxy sq − n t k 0 s q ) :
23 one * s q r t ( n t k 0 s q − kxy sq ) ; }
24 i f ( n ik0 == n tk0 ) ctmp = s i g n / d ou b l e ( nxy ) * exp ( i o n e * ( k z t *dz−n tk0 . imag ( ) * dz ) ) ;
25 e l s e ctmp = f r e s n e l T T E ( kz i , k z t ) * s i g n / do ub l e ( nxy ) * exp ( i o n e * ( k z t *dz−n tk0 . imag ( ) * dz ) ) ;
26 i f ( i s i n n e r p q ) {
27 E [ i j i d x 0 ] = E [ i j i d x 0 ] + ctmp * (
28 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] *X[ i ] + KY[ q ] *Y[ j ] ) ) +
29 e [ p q i d x 1 ] * exp ( i o n e * ( KX[ nx−p ]*X[ i ] + KY[ q ] *Y[ j ] ) ) +
30 e [ p q i d x 2 ] * exp ( i o n e * ( KX[ p ] *X[ i ] + KY[ ny−q ]*Y[ j ] ) ) +
31 e [ p q i d x 3 ] * exp ( i o n e * ( KX[ nx−p ]*X[ i ] + KY[ ny−q ]*Y[ j ] ) ) ) ;
32 E [ i j i d x 1 ] = E [ i j i d x 1 ] + ctmp * (
33 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] *X[ nx−1− i ] + KY[ q ] *Y[ j ] ) ) +
34 e [ p q i d x 1 ] * exp ( i o n e * ( KX[ nx−p ]*X[ nx−1− i ] + KY[ q ] *Y[ j ] ) ) +
35 e [ p q i d x 2 ] * exp ( i o n e * ( KX[ p ] *X[ nx−1− i ] + KY[ ny−q ]*Y[ j ] ) ) +
36 e [ p q i d x 3 ] * exp ( i o n e * ( KX[ nx−p ]*X[ nx−1− i ] + KY[ ny−q ]*Y[ j ] ) ) ) ;



37 E [ i j i d x 2 ] = E [ i j i d x 2 ] + ctmp * (
38 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] *X[ i ] + KY[ q ] *Y[ ny−1− j ] ) ) +
39 e [ p q i d x 1 ] * exp ( i o n e * ( KX[ nx−p ]*X[ i ] + KY[ q ] *Y[ ny−1− j ] ) ) +
40 e [ p q i d x 2 ] * exp ( i o n e * ( KX[ p ] *X[ i ] + KY[ ny−q ]*Y[ ny−1− j ] ) ) +
41 e [ p q i d x 3 ] * exp ( i o n e * ( KX[ nx−p ]*X[ i ] + KY[ ny−q ]*Y[ ny−1− j ] ) ) ) ;
42 E [ i j i d x 3 ] = E [ i j i d x 3 ] + ctmp * (
43 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] *X[ nx−1− i ] + KY[ q ] *Y[ ny−1− j ] ) ) +
44 e [ p q i d x 1 ] * exp ( i o n e * ( KX[ nx−p ]*X[ nx−1− i ] + KY[ q ] *Y[ ny−1− j ] ) ) +
45 e [ p q i d x 2 ] * exp ( i o n e * ( KX[ p ] *X[ nx−1− i ] + KY[ ny−q ]*Y[ ny−1− j ] ) ) +
46 e [ p q i d x 3 ] * exp ( i o n e * ( KX[ nx−p ]*X[ nx−1− i ] + KY[ ny−q ]*Y[ ny−1− j ] ) ) ) ; }
47 e l s e {
48 i f ( i s e q u a l p q ) {
49 E [ i j i d x 0 ] = E [ i j i d x 0 ] + ctmp * (
50 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] * X[ i ] + KY[ q ]*Y[ j ] ) ) ) ;
51 E [ i j i d x 1 ] = E [ i j i d x 1 ] + ctmp * (
52 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] * X[ nx−1− i ] + KY[ q ]*Y[ j ] ) ) ) ;
53 E [ i j i d x 2 ] = E [ i j i d x 2 ] + ctmp * (
54 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] * X[ i ] + KY[ q ]*Y[ ny−1− j ] ) ) ) ;
55 E [ i j i d x 3 ] = E [ i j i d x 3 ] + ctmp * (
56 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] * X[ nx−1− i ] + KY[ q ]*Y[ ny−1− j ] ) ) ) ; }
57 e l s e {
58 i f ( i s o u t e r p ) {
59 E [ i j i d x 0 ] = E [ i j i d x 0 ] + ctmp * (
60 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] *X[ i ] + KY[ q ] *Y[ j ] ) ) +
61 e [ p q i d x 2 ] * exp ( i o n e * ( KX[ p ] *X[ i ] + KY[ ny−q ]*Y[ j ] ) ) ) ;
62 E [ i j i d x 1 ] = E [ i j i d x 1 ] + ctmp * (
63 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] *X[ nx−1− i ] + KY[ q ] *Y[ j ] ) ) +
64 e [ p q i d x 2 ] * exp ( i o n e * ( KX[ p ] *X[ nx−1− i ] + KY[ ny−q ]*Y[ j ] ) ) ) ;
65 E [ i j i d x 2 ] = E [ i j i d x 2 ] + ctmp * (
66 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] *X[ i ] + KY[ q ] *Y[ ny−1− j ] ) ) +
67 e [ p q i d x 2 ] * exp ( i o n e * ( KX[ p ] *X[ i ] + KY[ ny−q ]*Y[ ny−1− j ] ) ) ) ;
68 E [ i j i d x 3 ] = E [ i j i d x 3 ] + ctmp * (
69 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] *X[ nx−1− i ] + KY[ q ] *Y[ ny−1− j ] ) ) +
70 e [ p q i d x 2 ] * exp ( i o n e * ( KX[ p ] *X[ nx−1− i ] + KY[ ny−q ]*Y[ ny−1− j ] ) ) ) ; }
71 i f ( i s o u t e r q ) {
72 E [ i j i d x 0 ] = E [ i j i d x 0 ] + ctmp * (
73 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] *X[ i ] + KY[ q ]*Y[ j ] ) ) +
74 e [ p q i d x 1 ] * exp ( i o n e * ( KX[ nx−p ]*X[ i ] + KY[ q ]*Y[ j ] ) ) ) ;
75 E [ i j i d x 1 ] = E [ i j i d x 1 ] + ctmp * (
76 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] *X[ nx−1− i ] + KY[ q ]*Y[ j ] ) ) +
77 e [ p q i d x 1 ] * exp ( i o n e * ( KX[ nx−p ]*X[ nx−1− i ] + KY[ q ]*Y[ j ] ) ) ) ;
78 E [ i j i d x 2 ] = E [ i j i d x 2 ] + ctmp * (
79 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] *X[ i ] + KY[ q ]*Y[ ny−1− j ] ) ) +
80 e [ p q i d x 1 ] * exp ( i o n e * ( KX[ nx−p ]*X[ i ] + KY[ q ]*Y[ ny−1− j ] ) ) ) ;
81 E [ i j i d x 3 ] = E [ i j i d x 3 ] + ctmp * (
82 e [ p q i d x 0 ] * exp ( i o n e * ( KX[ p ] *X[ nx−1− i ] + KY[ q ]*Y[ ny−1− j ] ) ) +
83 e [ p q i d x 1 ] * exp ( i o n e * ( KX[ nx−p ]*X[ nx−1− i ] + KY[ q ]*Y[ ny−1− j ] ) ) ) ; } } }

Listing 5. Implementation of ’SpatOpt’ for two-dimensional spatial refractive index symmetries.


