
Run time optimizations for the
Split Step Beam Propagation Method

Matthias Fertig
Konstanz University of Applied Sciences, Alfred-Wachtel Strasse 8, 78469 Konstanz, Germany

matthias.fertig@htwg-konstanz.de

Abstract: This paper proposes three extensions of the standard Split Step Beam Propa-
gation Method (SS-BPM) to optimize run times. The optimizations apply to homogeneous
symmetric or inhomogeneous symmetric systems and do not rely on approximations or in-
crease memory consumption. Such run time optimizations are important to shorten product
development cycles where a high number of parameter variations need to be investigated
to find optimal solutions. Today, massively parallel implementations are first choice to re-
duce run times while single-thread algorithms sometimes show potential to outperform such
parallel implementations. This paper focuses on the optimization of the single-thread im-
plementation of the SS-BPM. The proposed optimizations achieve their run time reductions
from symmetries similar to the optimizations applied to the algorithm of the Fourier Trans-
formation. The paper shows that a single-thread implementation of the SS-BPM can out-
perform a massively parallel implementation in several cases that have practical relevance.
To show the general potential of the optimizations and not limit the applicability to selected
examples, run times and correctness are investigated for simulations of random homoge-
neous symmetric and random inhomogeneous symmetric systems traversed by Gaussian
beams. The benchmarking is performed for a variation of the grid size and performance is
compared to the standard algorithm and a massively parallel implementation. All applica-
tions providing such types of symmetries will benefit from the optimizations. The results
show that the single-thread implementation can outperform the massively parallel imple-
mentation for inhomogeneous symmetric systems. The proposed optimizations achieve a
run time reduction of up to 73 percent, are on-demand and apply on-the-fly, show no loss of
accuracy, execute in-place and do not consume additional memory. © 2021 The Author(s)

1. Introduction

Run time and memory consumption are two key indicators for the performance of algorithms. The performance of
algorithms is important for the development of photonic devices because thousands of simulations on variations in
device parameters are required to find the optimal solution. Such simulations usually contain homogeneities and
symmetries that can be used to optimize the simulation performance. Such symmetries typically exist for waveg-
uides, tapers, splitters, couplers, gratings, lenses or free-space propagation between lenses. It is therefore highly
desirable to reduce run times and reduce or limit memory consumption during simulations wherever possible. As
hardware speeds increase through parallelization and hardware costs reduce due to mass production and general
availability, the optimization of single-thread performance tends to be neglected. But even well known and deeply
investigated algorithms, such as the SS-BPM, often contain the potential to improve single-thread performance.
This paper focuses on the single-thread performance of the SS-BPM and provides three types of optimizations to
improve run times up to levels that are competitive with implementations on a massively parallel system such as a
GPU.

The contribution of this paper is an optimized single-thread implementation of the SS-BPM for homogeneous
symmetric and inhomogeneous symmetric systems. It shows why the massively parallel implementation cannot
outperform the single-thread implementation for homogeneous symmetric and inhomogeneous symmetric sys-
tems. The optimizations achieve run time reductions between 40 and 73 percent so that the simulation overhead
for device optimization reduces by a factor of 1.6 to 4, which is to say that up to four times as many simulations can
be performed at the same time without the cost for a massively parallel hardware. The optimizations do not rely on
approximations of the standard algorithm, are optional, apply on the fly and do not consume additional memory.
All characteristics, the accuracy and the memory usage of the original algorithm are fully retained. The optimiza-
tions are introduced for two-dimensional systems and uni-directional propagation to show the basic concepts but
the principles are easily applicable to three-dimensional systems and bidirectional propagation. The paper is fur-

thermore a comfortable starting point for engineers who are new in the field of optical Fourier simulators because
it provides the basic theory and implementation examples to start quickly and adapt the code to individual needs.

In the original BPM scheme by Feit and Fleck [1], the propagation operator was split into two operators,
a homogenous medium propagation in the averaged index and a thin element transmission through the index
variation, i.e. the Split Step Beam Propagation Method (SS-BPM). With the application of propagation methods
to more general optical components, such as gradient index media, spheric and aspheric lenses, and gratings, there
is much interest in removing some of the restrictions of the SS-BPM. A non-paraxial finite difference SS-BPM
for non-paraxial propagation using a symmetrized splitting of the propagation operator in a reformulation of the
wave equation as a matrix ordinary differential equation has been introduced by Sharma and Agrawal [2]. Another
higher-order propagation operator has been used by Hadley [3] to remove the paraxial limitation. Ma and van
Keuren presented a three-dimensional wide-angle BPM in [4] for optical waveguide structures. A semivectorial
wide angle BPM was presented by Lee and Vogoes in [5]. The BPM was extended to very wide angles in [6].
Several vector extensions of the BPM have been presented by Yamauchi et al. [7], Liu and Li [8], and Wanguemert-
Perez and Molina-Fernandez [9]. Yamauchi et al. introduced a modified semivectorial beam propagation method
retaining the longitudinal field component, Liu and Li analyzed the polarization modes of rib waveguides with a
semivectorial BPM, and Wanguemert-Perez and Molina-Fernandez presented a fully-vectorial three-dimensional
extension of the BPM. A third class of extensions is based on the finite element (FE) approach as published by
Tsui et al. [10], Stern [11], Pinheiro et al. [12] and Obayya and Rahman [13]. The FE-based extensions of the
BPM are optimized for scalar, semivectorial, and full-vectorial fields as well as numerically efficient methods in
the order of citation. The fourth and last class of extensions in this brief overview of BPM-based methods is the
multigrid approach that is used to reduce computational effort at regions in a system that allow a reduced degree
of accuracy. Sewell et al. introduced a multigrid method for electromagnetic computation in [14]. Except for the
Padé approximation in [3] none of the BPM-based approaches overcome the limitation that originates from the
separation of the operators. Other Fourier propagation methods such as the Wave Propagation Method [15] or the
Vector Wave Propagation Method [16] perform a propagation of waves without the aforementioned limitations.

The paper is organized in five sections. Section 2 explains the original BPM algorithm and introduces the
nomenclature used in this paper. The run time optimizations are introduced in section 3. There, the standard algo-
rithm is extended by four individual steps: ’GridAnalysis’ (3.1), ’HomogOpt’ (3.2), ’FreqOpt’ (3.3) and ’SpatOpt’
(3.4). The optimizations are incrementally benchmarked in section 4. Section 4.3 investigates the improvements for
homogeneous symmetric and section 4.4 for inhomogeneous symmetric systems. All benchmarking is performed
with random Gaussian beams and random homogeneous symmetric and random inhomogeneous symmetric sys-
tems to show the general applicability of the approach. The benchmarking performs on variations of the grid size
and provides run times as well as cycle counts to allow performance comparisons with systems running at dif-
ferent clock speeds. Sections 4.5 and 4.6 show the thread timing breakdown for the single-thread implementation
on a CPU and the kernel timing breakdown for the massively parallel implementation on a GPU. The results are
summarized and conclusions are drawn in section 5.

2. Split-Step Beam Propagation Method (SS-BPM)

A discretized two-dimensional system is defined by a spatial refractive index distribution n(ix, iz) where x = ix ·4x
and z = iz ·4z is the position defined by the index 0≤ ix ≤ nx−1 and 0≤ iz ≤ nz−1. The system has an aperture
X = nx ·4x and a length Z = nz ·4x. A layer in the x-axis of such a system is called homogeneous if the refractive
index distribution n(ix) = const and symmetric if n(nx−1− ix) = n(ix). The entire system is called homogeneous
if n(ix, iz) = const for all ix and iz. The BPM algorithm computes the electromagnetic field distribution of a scalar
wave along an axis of propagation, i.e. the z-axis in this paper. The x-axis is the lateral axis and, together with the
z-axis, spans an orthogonal cartesian coordinate system. The system is split into nz layers parallel to the x-axis.
Each layer parallel to the x-axis is defined by nx samples. The nx · nz samples span the simulation grid of size
(nx ·4x) · (nz ·4z) = X ·Z. The incident field is stored in layer 0 and the BPM iterates the z-axis for nz−1 steps.
It computes the field distribution in layer iz+1 from the field distribution in layer iz, where iz iterates between
0≤ iz < nz−2 and layers are indexed between 0≤ iz < nz−1. The electric field in layer iz is Eiz and the refractive
index distribution is niz.

2.1. Plane wave decomposition (’FFT’)

The BPM is a Fourier method as it derives the spatial field distribution at Eiz+1 from the plane wave spectrum eiz
of layer Eiz. The spectrum is obtained from a Fourier Transformation F { }

eiz(kx) = F {Eiz(x)} (1)

with x = ix ·4x and kx(ix) = ix/(nx ·4x) = ix/x where −nx/2≤ ix ≤ nx/2−1.4x is obtained from X/nx where
X is the aperture size.

2.2. Amplitude transformation and average phase shift (’BPM Step-1’)

While propagating a distance 4z = z/nz through layer iz+ 1, each plane wave component eiz+1(kx) experiences
a phase shift φa,iz+1(kx) = kaz,iz+1(kx) ·4z, where k2

az,iz+1 = k2
a,iz+1− k2

x is the z-component of the propagation
vector k = (kx kz)

T and a function of kx. ka,iz+1 = na,iz+1 · k0 is the average wave number in layer iz +1 obtained
from the average refractive index in layer iz +1

na,iz+1 =
1
nx
·

nx

∑
ix=0

niz+1(ix) (2)

k0 is 2π/λ0 and λ0 is the wavelength of the incident wave at iz = 0 is E(x,0) = 1 · exp{ jkr} =
exp{ j(kx · x+ kz · z)}. Here, a unit amplitude is assumed for simplicity but without prejudice to the generality.
In the absence of changes of the refractive index and for purely real n(ix) the absolute of the amplitude remains
unchanged.

2.2.1. Amplitude transformation

A boundary is defined by a change in the average refractive index in the z-axis, i.e. na,iz 6= na,iz+1. In this case
the z-components of the propagation vector experience a change, i.e. kz,iz 6= kz,iz+1, and the amplitudes eiz(kx)
transform to fiz+1(kx) according to the Fresnel coefficients of amplitude

tte =
2 · kz,iz

kz,iz + kz,iz+1
(3)

fiz+1(kx) = tte · eiz(kx) (4)

for TE-polarized waves. The analysis in this paper focuses on TE-polarized waves but this does not affect the
proposed optimizations. TM Fresnel coefficients are applied to simulate TM-modes. The coefficient simplifies to
tte = 1 if na,iz = na,iz+1.

2.2.2. Average phase shift

The transmitted amplitude of each plane wave component fiz+1(kx) propagates a distance4z through layer iz +1
and experiences a phase shift φa,iz+1(kx) = kaz,iz+1(kx) ·4z. The plane wave component is then

eiz+1(kx) = fiz+1(kx) · e j·φz+1(kx) (5)

’BPM Step-1’ is finished after nx iterations when amplitude transformations and phase shifts for all plane wave
components eiz+1 are calculated.

2.2.3. ’NoOpt’ (standard) implementation of ’BPM Step-1’ [1]

0 f o r (i n t i x =0; ix<nx ; i x ++) {
1 kx sq = pow (KX[i x] . r e a l () , 2) ;
2 n i k 0 s q = pow (n i a v e *k0 , 2) ;
3 n t k 0 s q = pow (n t a v e *k0 , 2) ;
4 i f ((kx sq>=n i k 0 s q) | | (kx sq>=n t k 0 s q)) c o n t i n u e ;
5 k z t =one * s q r t (n t k 0 s q−kx sq) ;
6 i f (n i a v e != n t a v e) {
7 k z i =one * s q r t (n i k 0 s q−kx sq) ;
8 / / h i n t : use TM F r e s n e l a m p l i t u d e c o e f f i c i e n t f o r TM modes
9 e [i x] = 2* k z i * k z t / (k z i + k z t) * e [i x] * exp (i o n e * k z t * dz) ;

10 } e l s e {
11 e [i x] = e [i x] * exp (i o n e * k z t * dz) ;
12} } }

Listing 1. BPM reference code. Amplitude transformation and phase shift (’BPM Step-1’).

2.3. Inverse Fourier Transformation (’IFFT’)

Using the average refractive index na,iz+1 and not the exact refractive index niz+1(x) in the phase shift φiz+1(kx)
introduces a phase error φe(x) that needs to be corrected in the spatial domain. This imperfect propagated spatial
field distribution Fiz+1 is obtained from an inverse Fourier Transformation F−1 { }

Fiz+1(x) = F−1 {eiz+1(kx)} (6)

2.4. Spatial phase correction (’BPM-Step2’)

The local phase error φe(x) = (niz+1(x)− na,iz+1) · k0 · 4z depends on the spatial refractive index distribution
niz+1(x) and finally the field distribution in layer iz+1 is

Eiz+1(x) = Fiz+1(x) · e j·φe(x) (7)

2.5. ’NoOpt’ (standard) implementation of ’BPM Step-2’ [1]

0 backward−>f f t N o r m a l i z e d (e , E + ((i z +1) *nx) ;
1 f o r (i n t i x =0; ix<nx ; i x ++)
2 E [(i z +1) *nx+ i x] *= exp (i o n e * (N[(i z +1) *nx+ i x]− n t a v e) *k0* dz) ;

Listing 2. BPM reference code. Phase correction (BPM Step-2).

The sequence of steps is ’GridAnalysis’, ’FFT’, ’BPM Step-1’, ’IFFT’ and ’BPM Step-2’. The algorithm performs
nz iterations of this sequence until all layers are calculated. It is important to note that the phase shift calculates
with the average refractive index na,iz+1 and the phase correction considers perpendicular propagation only. This is
called the separation of the propagation operator into a diffraction operator that is applied on the spatial frequency
spectrum in equation 5 and a phase correction operator that is applied on the spatial field distribution in equation 7.

3. Run time optimizations

The run time optimizations in this paper utilize symmetries in the spatial frequency vector (’FreqOpt’) of the
forward propagating or backward propagating wave, symmetries in the spatial index distribution (’SpatOpt’) and
homogeneities (’HomogOpt’). In this context homogeneous layers are interpreted as a special form of symmetry
in the spatial refractive index distribution, where the index is constant.

3.1. Symmetry and homogeneity analysis (’GridAnalysis’)

The optimizations require a layer analysis step, called ’GridAnalysis’ in this paper, to investigate for symmetric
and homogeneous layers. Listing 3 shows an efficient way to perform this grid analysis in a half-range loop. This
half-range loop is also used to optimize the calculation of the average refractive index na,iz+1.

0 i s homog = t r u e ;
1 i s s y m m e t r i c = t r u e ;
2 tmp=N[(i z +1) *nx] . r e a l () ;
3 n i a v e = n t a v e ;
4 n t a v e =0; / / IMPORTANT: i n i t i a l i z e n t a v e z e r o
5 i n t n h a l f = i n t (c e i l (dou b l e (nx / 2))) ;
6 f o r (i n t i x =0; ix<n h a l f ; i x ++){
7 i f (N[(i z +1) *nx+ i x] . r e a l () !=N[(i z +1) *nx +(nx−1− i x)] . r e a l ()) {
8 i s s y m m e t r i c = f a l s e ;
9 i s homog = f a l s e ;

10 }
11 i f (tmp !=N[(i z +1) *nx+ i x] . r e a l ()) i s homog = f a l s e ;
12 i f (0== i x) n i a v e = n i a v e +N[i z *nx+ i x] . r e a l () +N[i z *nx +(nx−1− i x)] . r e a l () ;
13 n t a v e = n t a v e +N[(i z +1) *nx+ i x] . r e a l () +N[(i z +1) *nx +(nx−1− i x)] . r e a l () ;
14 }
15 i f (0== i x) n i a v e /= nx ;
16 n t a v e = is homog ? tmp : n t a v e / nx ;

Listing 3. ’GridAnalysis’ average index implementation w/ homogeneity and symmetry indication.

3.2. Optimization from homogeneous layers (’HomogOpt’)

A special case of spatial symmetry is homogeneity where the spatial refractive index distribution is not only
symmetric but constant. In case of homogeneous layers, the phase correction φe = (niz+1(x)− na,iz+1) · k0 ·4z
becomes zero because niz+1(x) is equal to na,iz+1. ’BPM Step-2’ becomes a multiplication by one and can therefore
be skipped. The expected run time improvement for ’HomogOpt’ equals the time spent for ’BPM Step-2’ minus
the time to analyse a layer for homogeneity.

3.3. Optimization from symmetries in the spatial frequency vector (’FreqOpt’)

The spatial frequency vector k is symmetric around the center frequency kx = 0, i.e. perpendicular propagation as
shown in table 1. The two-dimensional propagation vector k = (kx,kz)

T derives from its transveral component kx

and the average wave number ka,iz+1, with

kx(i) =
i

nx ·4x
=

i
x

, −nx

2
≤ i≤ nx

2
−1 (8)

and where i is mapped to ix as shown in table 1. The table shows the symmetry in kx for nx= 8 with kx(−ix)= kx(ix)
for ix ∈ {1,2, ... ,nx/2−1}. The symmetry does not occur for ix = 0 and ix = −nx/2 because the zero frequency
occurs only once and is counted a positive frequency so that the maximum positive spatial frequency is less than
the minimum spatial frequency by one spatial frequency increment 1/X .

ix 0 1 2 3 4 5 6 7
i 0 1 2 3 -4 -3 -2 -1

kx(i) 0 1/X 2/X 3/X -4/X -3/X -2/X -1/X
0 1/X 2/X 3/X -4/X −kx[3] −kx[2] −kx[1]

0 1/X ...
(nx

2 −1
)
· 1

X − nx
2 ·

1
X ... −kx[2] −kx[1]

Table 1. Symmetry in the spatial frequency vector for nx = 8.

This results in a symmetric z-component of the propagation vector kz and finally a symmetric phase φz. Equa-
tion 5 transforms to

φz+1(±ix/X) =
√

n2
a,iz+1k2

0− (±kx)2 ·4z when ix 6= 0 and ix 6=−nx/2 (9)

φz+1(0) = na,iz+1 · k0 ·4z when ix = 0 (10)

φz+1(−0.5/4x) =
√
(na,iz+1 · k0)2−0.25/4x2 when ix =−nx/2 (11)

where the number of iterations for ix reduce from nx to nx/2+1. Thereby, ’BPM Step-1’ in equation 5 reduces to

eiz+1(±kx) = fiz+1(±kx) · e j·φz+1(±kx) when kx 6= 0 and kx 6=−nx/2/X (12)

The expected run time improvement for ’FreqOpt’ is the time saved by iterating only the half range. Listing 4
shows the implementation of ’FreqOpt’ in a half-range loop and two assignments that share the intermediate result
by using spatial frequency symmetries.

0 i n t n h a l f = i n t (c e i l (dou b l e (nx / 2))) ;
1 cpx ctmp ;
2 f o r (i n t i x =0; ix<=n h a l f ; i x ++) {
3 ctmp = 2* k z i * k z t / (k z i + k z t) * exp (i o n e * k z t * dz) ; / / i n t e r m e d i a t e r e s u l t
4 i f (ix>0 && ix<n h a l f) {
5 e [i x] *= ctmp ;
6 e [nx−i x] *= ctmp ;
7 } e l s e {
8 e [i x] *= ctmp ;
9 } }

Listing 4. Implementation ’FreqOpt’ for symmetries in the spatial frequency vector (BPM Step-1).

3.4. Optimization from symmetries in the spatial refractive index distribution (’SpatOpt’)

Symmetries in the spatial index distribution niz+1 do not always occur and need to be detected. This is again per-
formed in a half-range loop as shown in listing 3. In case of symmetry in the spatial index distribution, equation 7
becomes

φe,iz+1(±x) = (niz+1(±x)−na,iz+1) · k0 ·4z (13)

and the number of iterations in listing 2 reduces from nx to nx/2. The expected run time improvement for ’SpatOpt’
is the time saved by iterating only the half range. Listing 5 shows the implementation of ’SpatOpt’. In case of
symmetry in the spatial index distribution the code in listing 2 is executed in a half-range loop while otherwise the
conventional loop applies.

0 i f (i s s y m m e t r i c) {
1 f o r (i n t i x =0; ix<n h a l f ; i x ++) {
2 ctmp = exp (i o n e * (N[(k +1) *nx+ i x]− n t a v e) *k0* dz) ;
3 E [(k +1) *nx+ i x] *= ctmp ;

4 E [(k +1) *nx +(nx−1− i x)] *= ctmp ;
5 } } e l s e
6 f o r (i n t i x =0; ix<nx ; i x ++){
7 E [(k +1) *nx+ i x] *= exp (i o n e * (N[(k +1) *nx+ i x]− n t a v e) *k0* dz) ;

Listing 5. Implementation ’SpatOpt’ for spatial refractive index symmetries (BPM Step-2).

4. Benchmarking

The optimizations for ’GridAnalysis’, ’HomogOpt’, ’FreqOpt’ and ’SpatOpt’ are investgated with two types of
benchmarks, a random forward propagating Gaussian beam of unit amplitude propagation through random homo-
geneous symmetric and random inhomogeneous symmetric systems. Each benchmark iterates the grid size five
times from 32x128 up to 2048x8192 samples. Every iteration performs 50 runs on a CPU and a GPU for a system
size 4λ · 4λ · 4λ , where λ is a random wavelength and waist of the Gaussian beam in a range between 500nm
and 1500nm. Thereby a number of 500 runs per benchmark and a total number of 1000 runs is performed to an-
alyze the run time optimizations. In a second series of runs the CPU-thread and GPU-kernel time breakdown are
analyzed to show the improvements of the individual steps of optimization.

4.1. Implementation and run times

The optimizations extend the conventional code and do not apply any approximations. They apply on-the-fly in
case of homogeneous symmetric or inhomogeneous symmetric layers. The benchmarks are performed on a CPU
with 2.1GHz clock frequency and a GPU with 1.13GHz core frequency and 1024 compute cores. The CPU code is
single-threaded and does not benefit from any parallel code execution. The CPU-thread applies ’GridAnalysis’ to
indicate layer homogeneity and symmetry. The GPU-kernel applies a reduced version of ’GridAnalysis’ to indicate
homogeneous layers and to apply ’HomogOpt’. The GPU-kernel does not apply ’FreqOpt’ or ’SpatOpt’ because
the relevant code runs in parallel on the GPU cores anyway. Syncronization points of the GPU-kernel are ’FFT’
and ’IFFT’ while ’BPM Step-1’ and ’BPM Step-2’ run parallel. The device frequency ratio is 1.13/2.1 = 0.54. All
GPU run times exclude latencies for copying data from host-to-device and from device-to-host. The copy latencies
are between 2 · 0.08ms for a 32x128 grid and 2 · 156ms for a 2048x8192 grid and depend on the performance of
the hardware interface. This copy overhead is excluded from run time analysis to show the performance of the
parallel SS-BPM algorithm.

4.2. Accuracy and memory consumption

All proposed optimizations have been benchmarked against the standard program code, i.e. ’NoOpt’. The relative
error in the electric field distribution is below 0.01 percent per sample for all runs in the benchmarks, i.e. −40dB.
In order to average-out occasional run time glitches from task switches or other interruptions of the operating
system, all run times are average values obtained from 50 runs per iteration. The optimizations perform in-place
and require no additional memory. Individual simulations utilize memory for the complex-value electric field and
real-value refractive index, i.e. 3 ·(nx ·nz) ·4 Bytes for single precision and 3 ·(nx ·nz) ·8 Bytes for double precision.
If material absorption is supposed to be simulated, the refractive index has to be complex-valued but to reduce
memory consumption for storing the system the refractive index is real-valued in this case. This adds up to 384MB
memory. With this setting the maximum grid size on the GPU is 2048x8192 samples due to available on-board
memory.

4.3. Homogeneous symmetric systems benchmarking

Figure 1 shows the run times and percentual run time reductions over grid size for a benchmarking of random
homogeneous symmetric systems traversed by Gaussian beams on the CPU in comparison to the GPU. Solid lines
indicate run times and are read against the left y-axis while dashed lines indicate percentual run time improvements
and are read against the right y-axis. X-axis and y-axis are linear scaled. Results are shown for the reference code
without any optimization (’NoOpt’), the optimization for homogeneous systems (’HomogOpt’), the combined
optimization for homogeneous systems and symmetry in the spatial frequency vector (’HomogOpt+FreqOpt’) and
for the implementation on the GPU. The parallel implementation on the GPU uses ’HomogOpt’ as well.

The ’HomogOpt+FreqOpt’ optimization achieves a maximum run time reduction of up to 73 percent as shown in
figure 1 when compared to ’NoOpt’. ’HomogOpt’ contributes a maximum reduction of 68 percent and ’FreqOpt’
between five and six percent for the shown grid sizes and up to 18 percent for a 64x256 grid (not shown here). The
run time reduction over all grid sizes is between 58 and 73 percent. Improvements rise quickly and start to saturate
early at 73 percent as shown in figure 1. Figure 1 shows that the ’GPU+HomogOpt’ outperforms the unoptimized

Fig. 1. Run time and percentual reduction over grid size for Gaussian beams traversing random
homogeneous symmetric systems.

algorithm ’NoOpt’ in run time for all grid sizes and that ’HomogOpt+FreqOpt’ achieves even faster run times than
’GPU+HomogOpt’ for all grid sizes.

Table 2 shows the number of compute cycles from random homogeous symmetric systems benchmarking.
Compute cycles are obtained from run time multiplied by clock frequency. The table shows that the number of
compute cycles for ’GPU+HomogOpt’ is 30 to 43 percent less than on the CPU for ’HomogOpt+FreqOpt’ for all
grid sizes. When compared to ’NoOpt’, the number of compute cycles on the GPU is smaller by up to 83 percent
than on the CPU as depicted in figure 3. Since the GPU runs at lower frequency, the single-thread algorithm on the
CPU is faster as long as the CPU over GPU compute cycle ratio does not exceed the frequency ratio of 0.54. The
linear extrapolation of numbers in figure 1 for ’GPU+HomogOpt’ (red) and ’HomogOpt+FreqOpt’ (black) shows
that the single-thread implementation on the CPU would outperform the massively parallel implementation on the
GPU in run times for larger grids.

Despite the GPU over CPU clock frequency ratio of 0.54, the single-thread implementation of ’NoOpt’ has signif-
icantly higher run times on the CPU when compared to the parallel implementation of ’GPU+HomogOpt’ on the
GPU while at the same time ’HomogOpt+FreqOpt’ on a single compute core outperforms the ’GPU+HomogOpt’
on up to 1024 compute cores by five to six percent (fig. 1).

Table 2. Compute cycle numbers in mega-cycles for Gaussian beams traversing random homoge-
neous symmetric systems.

nx ny NoOpt1 HomogOpt2 Delta FreqOpt Delta GPU4 Delta
vs. 1 +SpatOpt3 vs. 1 +HomogOpt vs. 3

[MCyc] [MCyc] [%] [MCyc] [%] [MCyc] [%]
128 512 8.36 4.42 -47 4.19 -50 2.36 -43
256 1024 22.32 9.29 -58 7.97 -64 5.05 -36
512 2048 80.10 27.44 -66 22.64 -72 13.30 -36
1024 4096 324.20 100.00 -69 85.10 -73 54.20 -36
2048 8192 1,332.00 411.60 -67 342.00 -74 238.10 -30

4.4. Inomogeneous symmetric systems benchmarking

Figure 2 shows the run times and percentual run time reductions from a benchmarking of random inhomogeneous
symmetric systems traversed by Gaussian beams on the CPU in comparison to the GPU. The figure has the same
structure as figure 1.

Fig. 2. Run times and percentual reductions over grid size for inhomogeneous symmetric systems.

In case of inhomogeneous symmetric layers the optimization ’HomogOpt’ is useless because ’BPM Step-2’ is
required to perform the phase correction. The lines for ’NoOpt’ and ’HomogOpt’ in figure 2 therefore coincide and
’HomogOpt/NoOpt’ shows a degradation of up to one percent. This degradation is caused by the overhead in ’Gri-
dAnalysis’. ’FreqOpt+SpatOpt’ achieves a total run time reduction of 36 to 40 percent while ’GPU+HomogOpt’
achieves a 27 percent reduction only. The run time improvement with ’FreqOpt+SpatOpt’ scales well with the grid
size and shows quite a constant level of improvement (black dashed line in fig 2) while ’GPU+HomogOpt’ shows
a significant drop in performance for nx < 1024 (red dashed line in fig 2). The run times of ’FreqOpt+SpatOpt’
and ’GPU+HomogOpt’ show an increasing gap so that the advantage of ’FreqOpt+SpatOpt’ tends to improve
for larger grids. The linear extrapolations of run times for ’GPU+HomogOpt’ (red formula in fig 2) and ’Fre-
qOpt+SpatOpt’ (black formula in fig 2) confirm this trend. The gradient for ’GPU+HomogOpt’ is less than the
gradient for ’FreqOpt+SpatOpt’.

Table 3. Compute cycle numbers for Gaussian beams traversing random inhomogeneous symmetric
systems in mega cycles.

nx ny NoOpt1 HomogOpt2 Delta FreqOpt Delta GPU4 Delta
vs. 1 +SpatOpt3 vs. 1 +HomogOpt vs. 3

[MCyc] [MCyc] [%] [MCyc] [%] [MCyc] [%]
128 512 9.15 9.24 +1 6.53 -29 27.04 +313
256 1024 29.39 29.66 +1 19.42 -35 54.34 +180
512 2048 110.60 111.80 +1 70.78 -37 109.40 +55
1024 4096 439.00 442.10 +1 279.00 -37 226.60 -19
2048 8192 1,920.00 1,913.00 < 1 1,150.00 -40 751.70 -35

Table 3 gives the number of compute cycles for inhomogeneous symmetric random benchmarking. The figures
show that there are 19 to 35 percent less compute cycles on the GPU than on the CPU for ’FreqOpt+SpatOpt’
for nx ≥ 1024. For nx < 1024 ’GPU+HomogOpt’ performs up to 313 percent more cycles when compared to
’FreqOpt+SpatOpt’. Figure 3 (right) shows that the number of compute cycles on the GPU is up to 60 percent
smaller than for ’NoOpt’. The implementation of ’GridOpt’ is efficient as it scales well with the grid and constantly
reduces the performance by one percent or less as shown in table 3.

Despite the GPU over CPU clock frequency ratio of 0.54, the single-thread implementation of ’NoOpt’ shows
significantly higher run times on the CPU when compared to the parallel implementation of ’GPU+HomoOpt’ on
the GPU while at the same time ’FreqOpt+SpatOpt’ on a single compute core outperforms ’GPU+HomogOpt’
on up to 1024 compute cores by 13 percent (fig. 2).

Fig. 3. Percentual reduction in compute cycles compared to ’NoOpt’ over grid size for Gaussian
beams traversing random homogeneous symmetric (left) and random inhomogeneous symmetric
(right) systems benchmarking. The number of compute cores on the CPU is one and on the GPU
1024.

4.5. CPU thread timing breakdown

Figure 4 shows the timing breakdown of the single-thread implementation on a CPU. The latencies for ’Grid-
Analysis’, ’FFT’, ’BPM Step-1’, ’IFFT’ and ’BPM Step-2’ over the level of optimization ’NoOpt’, ’HomogOpt’
and ’HomogOpt+FreqOpt’ for homogeneous symmetric or ’FreqOpt+SpatOpt’ for inhomogeneous symmetric
systems are shown. The analysis is performed on a 2048x8192 grid size.

Fig. 4. CPU single-thread timing over level of optimization for Gaussian beams traversing random
homogeneous symmetric systems (left) and random inhomogeneous symmetric systems (right) on a
2048x8192 grid.

The results in figure 4 (left) show that the latency for ’BPM Step-2’ removes completely for homogeneous
symmetric systems, thereby reducing the run time by 65 percent from 0.241ms to 0.084ms. ’FreqOpt+HomogOpt’
reduces the overall run time by another six percent from 0.084ms to 0.071ms and ’BPM Step-1’ by 50 percent
from 0.018ms to 0.009ms. Latencies for ’GridAnalysis’, ’FFT’ and ’IFFT’ show some small variation that is
independent of ’HomogOpt’ or ’FreqOpt’.

The results in figure 4 (right) show that the overall latency for ’HomogOpt’ increases by one percent from

0.259ms to 0.261ms. The increase is caused by additional service code for ’HomogOpt’ in ’GridAnalysis’ and
another if-clause between ’IFFT’ and ’BPM Step-2’. With ’FreqOpt+SpatOpt’ a total run time improvement of
40 percent from 0.261ms to 0.156ms is achieved. The latency for ’BPM Step-1’ improves by 42 percent from
0.012ms to 0.007ms and for ’BPM Step-2’ by 51 percent from 0.185ms to 0.09ms.

4.6. GPU kernel timing breakdown

Fig. 5. GPU (1.13GHz, 1024 cores, massively parallel) timing breakdown for the first iteration (left)
and the nz/2-th iteration (right) with ’GPU+HomogOpt’ and Gaussian beams traversing random
symmetric inhomogeneous grids.

Figures 5 and 6 show the timing breakdown for one iteration for inhomogeneous symmetric layers with opti-
mzations ’FreqOpt’ and ’SpatOpt’ on the GPU and CPU. The figures have the same linear scale on the y-axis and
show the latencies in milliseconds for the computation steps ’GridAnalysis’, ’FFT’, ’BPM Step-1’, ’IFFT’ and
’BPM Step-2’ over the grid size nxxnz. Both figures show the timing breakdown for the first iteration of a run on
the left side and for the nz/2-th iteration of a run on the right side.

Figure 5 shows the timing breakdown for the GPU kernel. The latencies for the first iteration are significantly
higher than for the nz/2-th iteration because the caches and registers of the hardware are not loaded yet. The
latency for ’GridAnalysis’ is negligible for all grid sizes and the latencies of ’BPM Step-1’ and ’BPM Step-
2’ change with the number of samples as expected. The latencies for ’FFT’ reduces significantly between the
first and nz/2-th iteration but still consumes a significant amount of computation time for all grid sizes. ’IFFT’
is quite constant for the first and nz/2-th iteration, probably because the internal data structures for the Fourier
Transformation is set up with the first ’FFT’ in the first iteration so that it is already available ’IFFT’. The latencies
for ’BPM Step-1’ and ’BPM Step-2’ reduce by up to 30 percent from the first iteration to the nz/2-th iteration on
the GPU.

The timing breakdown on the CPU in figure 6 shows significantly lower latencies per iteration. While the
latencies for ’GridAnalysis’ are almost identical, the latencies for ’FFT’ and ’IFFT’ on the GPU are up to 0.54 ·
0.127ms/0.033ms ≈ 2.1 times higher for the first iteration and still 0.54 · 0.024ms/0.008ms = 1.6 times higher
for the nz/2-th iteration than on the CPU as shown in figure 6, where 1.13GHz/2.1GHz≈ 0.54 is frequency ratio
between GPU and CPU. The latencies for ’BPM Step-1’ are lower on the CPU for all grid sizes when compared
to the GPU. The latency for ’BPM Step-2’ on the GPU is 5.4 times lower in the first iteration and still 4.5 times
lower in the nz/2-th iteration when compared to the CPU.

The latencies on the GPU in figure 5 show a small dependency on the grid size while the latencies on the CPU
change significantly with the number of samples. The latencies per iteration on the CPU are lower than on the GPU
for all grid sizes under investigation and change significantly from the first to the nz/2-th iteration. The analysis
of the last iteration (not shown here) did not show a better performance.

5. Conclusions

The paper demonstrates that the algorithm of the SS-BPM is well suited for single-thread optimizations up to a
point where it can compete with a massively parallel implementation.

The optimized single-thread implementation of the SS-BPM shows faster run times than the parallel implemen-
tation for homogeneous symmetric systems as shown in section 4.3 and for inhomogeneous symmetric systems as
shown in section 4.4.

Fig. 6. CPU (2.1GHz, 1 core, single-thread) timing breakdown for the first iteration (left) and the
nz/2-th iteration (right) with ’FreqOpt+SpatOpt’ and Gaussian beams traversing random symmetric
inhomogeneous grids.

The complexities of the algorithms are in O(n) and the gradients of the linear extrapolations show an increasing
gap in run times as shown in sections 4.3 and 4.4. Hence, the run time improvements with the proposed optimiza-
tions tend to increase with the grid size under the given circumstances in comparison to the massively parallel
implementation.

The proposed optimizations for the SS-BPM achieve a maximum run time reduction of 73 percent for homoge-
neous symmetric systems as shown in section 4.3 and 40 percent for inhomogeneous symmetric systems as shown
in section 4.4 while the massively parallel implementation achieves a maximum run time reduction of 68 percent
for homogeneous symmetric and of 27 percent for inhomogeneous symmetric systems.

The comparison of clock execution cycles for homogeneous symmetric systems shows that the massively par-
allel implementation of the SS-BPM performs between 30 and 40 percent less cycles than the optimized single-
thread implementation as shown in section 4.3.

The comparison of clock execution cycles for inhomogeneous symmetric systems shows that the massively
parallel implementation of the SS-BPM performs up to 313 percent more cycles for small grids and at least 17
percent less cycles for large grids than the optimized single-thread implementation as shown in section 4.4.

The results demonstrate that the single-thread implementation scales better with the number of samples than the
parallel implementation as shown in section 4.4. A parallel implementation of the SS-BPM should be considered
if the clock frequency ratio between GPU and CPU allows to compensate the gap in execution cycles and if the
sequential program codes of the massively parallel implementation show comparable performance to the single-
thread implementation.

The integrated grid analysis algorithm consumes only one percent of performance as shown in section 4.4 so that
a separate pre-processing step would not significantly improve run times. This makes the optimizations applicable
to systems that change their characteristics during simulation.

The proposed optimizations operate in-place and do not allocate additional memory. They are not based on
approximations and retain the accuracy and memory footprint of the original algorithm. Hence, the optimizations
achieve run time reductions up to a level of a massively parallel system without any cost.

Disclosures The author declares no conflicts of interest.

References

1. M. Feit, J. Fleck, Light propagation in graded index fibers, Appl. Opt., vol. 24, pp. 3390-3998, 1978.
2. Sharma, Anurag & Agrawal, Arti, Non-paraxial Split-step Finite-difference Method for Beam Propagation, Optical and

Quantum Electronics, 38. 19-34. 10.1007/s11082-006-0019-4, Feb 2006.
3. G.R.Hadley, Wide-Angle beam propagation method using Padé approximant operators, Opt Lett, Vol 17, No. 20, pp

1426-1428, 1992.
4. Changbao Ma and Edward Van Keuren, A three-dimensional wide-angle BPM for optical waveguide structures in

OPTICS EXPRESS, (22 January 2007), Vol. 15, No2.
5. P. Lee, E. Vogoes, Three-dimensional semi vectorial wide-angle beam propagation method, J. Lightwave Tech., vol.

12, no. 2, pp. 215-225, Feb. 1994.

6. T. Anada, T. Hokazono, T. Hiraoka, J. Hsu, T. Benson, P. Sewell, Very-wide-angle beam propagation methods for
integraded optical circuits., IEICE Trans Electron, Vol E82-C, No. 7, pp. 1154-1158, 1999.

7. Junji Yamauchi, Yuta Nito and Hisamatsu Nakano, A modified semivectorial beam propagation method retaining the
longitudinal field component in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society
of America, 2008), paper IWB5.

8. P. Liu and B.J. Li, Semivectorial beam-propagation method for analyzing polarized modes of rib waveguide., IEEE J.
Euantum Electron, Vol. 28, pp 778-782, April 1992.

9. J. Wanguemert-Perez, I. Molina-Fernandez, A novel Fourier based 3D full-vectorial beam propagation method, Optical
Quantum Electronics, vol. 36, pp. 285-301, Kluwer Academic Publishers 2004, Netherlands.

10. Y. Tsuji, M. Koshiba, N. Takimoto, Finite element beam propagation method for anisotropic optical waveguides.,
Journal Lightwave Technology, Vol. 17, No. 4, pp.723-828, Apr. 1999.

11. M. Stern, Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles, IEEE
Proceedings, Vol. 135, Pt.J, No 1, Feb 1988.

12. H. Pinheiro, A. Barbero, H. Hernandez-Figueroa, Full-vectorial FE-BPM approach for the analysis of anisotropic
medium with off-diagonal permittivity terms, Mic. Opt. Tech. Letters, V.25, No 1, pp. 12-14, April 2000.

13. S.Obayya, B. Rahman, New vectorial numerically efficient propagation algorithm based on the finite element method.,
IEEE Journal Lightwave Technology, Vol. 18, No. 3, pp. 409-415, Mar 2000.

14. P. Sewell, J. Wykes, A. Vukovic, D. W. P. Thomas, T.M.Benson, C. Christopoulos Multi-grid interface in computational
electromagnetics, Elec. Lett. Vol.40 No.3, pp 162-163, 2004.

15. K.-H. Brenner and W. Singer, Light propagation through microlens: a new simulation method in Applied Optics 32,
(1993), 4984-4988

16. M. Fertig and K.-H. Brenner, Vector wave propagation method, Journal of the Optical Society of America (JOSA) A,
vol. 27, pp. 709-717, Apr 2010

