
MPC-WORKSHOP FEBRUAR 2020

Universal Memory Automaton and
Automated Verilog HDL Code Generation for

a Cache Coherency Snooping Protocol
Matthias W. Fertig

Abstract—This paper introduces the concept of Uni-
versal Memory Automata (UMA) and automated compi-
lation of Verilog Hardware Description Language (HDL)
code at Register Transfer Level (RTL) from UMA graphs
for digital designs. The idea is based on the observation
that Push Down Automata (PDA) are able to process
the Dyk-Language - commonly known as the balanced
bracket problem - with a finite set of states while Finite
State Machines (FSM) require an infinite set of states.
Since infinite sets of states are not applicable to real
designs, PDAs appear promising for types of problems
similar to the Dyk-Language. PDAs suffer from the prob-
lem that complex memory operations need to be emulated
by a specific stack management. The presented UMA
therefore extends the PDA by other types of memory,
e.g. Queue, RAM or CAM. Memories that are eligible
for UMAs are supposed to have at least one read and
one write port and a one-cycle read/write latency. With
their modified state-transfer- and output-function, UMAs
are able to operate user-defined numbers, configurations
and types of memories. Proof of concept is given by
an implementation of a cache coherency protocol, i.e.
a practical problem in microprocessor design.

Index Terms—Finite state machines, sequential cir-
cuits, sequential synthesis, high-level and register-transfer
level synthesis, methodologies for EDA, automata exten-
sions, processors and memory architectures, push down
automata, HDL compilation, digital design automation.

I. INTRODUCTION

A. Finite State Machines
In Digital Engineering, Finite State Machines

(FSMs) [1]–[3, 7, 8, 12] are a standard design ele-
ment to process regular languages. They are typically
utilized to implement control logic. FSMs are given by
a set

FSM = (S, S0, F,Σ,Γ, δ, ω) (1)

where S is a finite set of states, S0 is the initial state,
F ⊆ S is a finite set of final states, Σ is the input
alphabet, Γ is the output alphabet, δ is the state transfer
function and ω is the output function. State transfers
are defined by the state transfer function

δ :

{
S × Σ → S
s′ = δ(s, σ)

(2)

Matthias W. Fertig, matthias.fertig@htwg-konstanz.de, University
of Applied Sciences HTWG Konstanz, Alfred Wachtel Straße 8,
78462 Konstanz.

where a destination state s′ ∈ S is reached from a
source state s ∈ S by processing an input σ ∈ Σ.
Outputs are defined by the output function

ω :

{
S × Σ → Γ
γ = ω(s, σ)

(3)

where γ ∈ Γ is an output symbol derived from a
state s ∈ S and input σ ∈ Σ. This architecture is of
type Mealy since the output function depends on inputs
and states. Moore and Simple Moore architectures are
deduced from simplified output functions. FSMs are
called finite because they are built from a finite set of
states, implemented by a state memory. State memory
is of size log2(NS) and required in all known FSM
architectures, where NS is the number of states in the
finite set of states.

B. Push Down Automata

Push Down Automata (PDA) [4]–[6, 9]–[11, 13],
also called Stack Automata, are given by a set

PDA = (S, S0, F,Σ,Γ, δ, ω,A,X) (4)

where common elements equal those of the FSM.
X is the stack alphabet (I-B1) to operate the stack
memory (II-A2) A.

X = {PUSH(), POP (), TOP (), NOP ()} (5)

The state transfer function of a PDA δ is

δ :

{
S × Σ×X → S ×X

(s′, x) = δ(s, σ, x)
(6)

where x ∈ X are stack operations and w ∈ Σ∗ is a
word on the input alphabet. The output function of the
PDA is

ω :

{
S × Σ×X → Γ×X

(γ, x) = ω(s, σ, x)
(7)

35

mailto:matthias.fertig@htwg-konstanz.de

UNIVERSAL MEMORY AUTOMATON AND AUTOMATED VERILOG HDL
CODE GENERATION FOR A CACHE COHERENCY SNOOPING PROTOCOL

1) Stack alphabet: A set of operations on the stack
A. PUSH(A,w) puts an element w ∈ Σ∗ on the
stack, POP(A) returns the first element from the stack
and deletes the first element, TOP(A) returns the
first element and keeps the first element, NOP(A)
is a no-operation on the stack, sometimes called the
empty operation. Stack operations are utilized in state-
transfer- and output-functions to conditionally read and
write the stack.

II. THE UNIVERSAL MEMORY AUTOMATON

Universal Memory Automata (UMA) are an innova-
tive concept for operating multiple (parallel) memories
in a finite state graph. While FSMs utilize state mem-
ory and PDAs utilize state and stack memory only,
UMAs extend the state memory by multiple (k) mem-
ories of selectable and configurable type. Eligible types
of memories in this paper are last-in first-out (Stack)
A like in PDAs, first-in first-out memory (Queue)
Q, random-access (RAM) R and content-addressable
(CAM) memory C. UMAs allow an arbitrary number
and a user-defined configuration of those memories.
PDAs are of course able to emulate all these types of
memory by a specific stack management, but the addi-
tional effort makes PDAs more of a theoretic model of
computation than an applicable tool for real designs. If
several and potentially different types of memories are
desired, the effort to model those with the single stack
of a PDA becomes even higher. To resolve this issue,
this paper introduces the idea of operating multiple
memories of variable type and configuration, which
is particularly relevant for real applications. This is
performed by the UMA.

Universal Memory Automata (UMA) are given by a
set

UMA = (S, S0, F,Σ,Γ, δ, ω,X
k,X k) (8)

where common elements equal those of the PDA
and Xk is an k-dimensional set of memories of se-
lectable type, i.e. X ∈ {A,Q,R,C}, operated by a
k-dimensional memory alphabet X k. UMAs thereby
control k memory instances Xk, k ∈ N+

0 , each of
different type if desired.

Memory operations PUSH(), POP(), TOP() and
NOP() are contained in each of the k-dimensional
memory alphabet, X k. Dimensions of memory and
memory alphabet are connected to each other so that
the i-th memory alphabet Xi operates on the i-th
memory instance Xi, where 1 ≤ i ≤ k. Operations are
shared from PDA-theory and implemented by virtual
functions in UMA-theory to perform according to the
principle of operation of the adjacent memory. For
memories of type R and C an address is required
while for memories of type Q and A accesses is self-
organized by the memory using an internal address
pointer. The address width of the RAM or CAM is
log2(N), where N is the number of addressable entries

Figure 1. Universal Memory Automata (UMA) architecture block-
diagram.

of the memory. Such type of UMA is of type Mealy
architecture. Moore and Simple-Moore architectures
are gained from a simplification of the output function
similar to PDA and FSM. The UMA architecture
blockdiagram is shown in Figure 1.

A. Types of memory

1) State memory: The UMA state memory is equal
to the state memory of FSM and PDA.

2) Last-In First Out (Stack): A stack A is a memory
with NA entries, each of width nA. If nA = 8, the
operation PUSH(A,8’h00) stores eight bits, all of them
zero, on top of the stack. A subsequent operation
PUSH(A,8’hFF) stores eight bits, all of them one,
on top of the stack. 8’hFF is returned by POP(A)
and 8’h00 by another POP(A). Using two TOP(A)
operations would return 8’hFF twice. POP on an empty
and PUSH on a full stack returns a zero entry plus an
error indication.

3) First-In First Out (Queue): A queue Q is a mem-
ory with NQ entries, each of width nQ. For nQ = 8 the
operation PUSH(Q,8’h00) stores eight bits, all of them
zero, at the end of the queue. A subsequent operation
PUSH(Q,8’hFF) stores eight bits, all of them one,
at the end of the same queue. 8’h00 is returned by
POP(Q) and 8’hFF by another POP(Q). The queue
is then empty. Using two TOP(Q) operations would
return 8’h00 twice. POP on an empty and PUSH on a
full queue returns a zero entry plus an error indication.

4) Random-Access Memory (RAM): A RAM R is
a memory with NR entries, each of width nR and an
address of width log2(NR). For NR = 8, the operation
PUSH(R, 3’b000, 8’hFF) stores eight bits, all of them
one, at address 0. 8’hFF is returned by POP(R, 3’b000)
and 8’h00 by another POP(R, 3’b000). Using two
TOP(R, 3’b000) operations would return 8’hFF twice.

36

MPC-WORKSHOP FEBRUAR 2020

5) Content-Addressable Memory (CAM): A CAM
C is a memory with NC entries, each of width nC
and an address of width log2(NC). CAMs are high-
speed search engines to return the address of content-
specific memory entries in one cycle. For nC = 8 the
operation PUSH(C,3’b000,8’h00) stores eight bits, all
of them zero, at address 0. A subsequent operation
PUSH(C,3’b111,8’hFF) stores eight bits, all of them
one, at address 7. TOP(C,8’h00) returns the first ad-
dress with content 8′h00, i.e. 0. POP(C,8’hFF) returns
the first address with content 8’FF, i.e. 7. C is assumed
to be initialized zero. While POP deletes the entry,
TOP will keep the entry. It is left up to the designer of
the CAM how to organize deleted entries, to indicate if
entries are not found and to return the entry if required.
UMA-theory is able to manage all types of indications
within a single-cycle boundary.

B. n-dimensional memory operations

If memory operations do not return status informa-
tion on write accesses for evaluation in state transfer
logic, read memory operations X− are assigned to the
input side of the state transfer function (eq. 6) and
write operations X+ are assigned to the output side. A
set of read operations is defined

X− = {TOP (), POP ()} (9)

for the input side of the state transfer function and
a set of write operations

X+ = {PUSH(), NOP ()} (10)

for the output side of the state transfer function,
where X = X− ∪ X+. In state transfers, only one
operation per memory instance is allowed for cycle
alignment reasons. This concept is called l-dimensional
reading and m-dimensional writing in this paper. For
l- plus m-dimensional memory operations, at least
max(l,m) memories are required. The state transfer
function δ then becomes

δ :

{
S × Σ×X l

− → S ×Xm
+

(s′, x1+, ..., xm+) = δ(s, σ, x1−, ..., xl−)
(11)

and the output function

ω :

{
S × Σ×X l

− → Γ
γ = ω(s, σ, x1−, ..., xl−)

(12)

where xi− ∈ Xi− and xi+ ∈ Xi+ are read and write
operations on memory Xi respectively.

C. Example of three-dimensional memory operations
in state transfers

In case of a cache coherency snooping protocol with
inputs rd, tag and idx, states ID and RD and RAM

memories TAG and MESI, a state transition from
idle state (ID) to read state (RD) is given by

(RD, PUSH(TAG, idx),

PUSH(MESI, 4′b0100)) (13)
= ID ∧ rd ∧ (tag != TOP (TAG, idx))

where tag is the address tag and idx is the address
index, i.e. the cache line index and the read/write
addresses for TAG and MESI. In this transition l = 2
and m = 1, i.e. a two-fold write operation and a
one-fold read operation. A sequence of three memory
accesses plus state transfer is coded into a single state
transition. Eq. 13 reads as follows:

(Right-hand side:) IF the UMA is in idle state ID and
a read operation occurs, i.e. rd is true, and the address
tag does not equal the tag in the memory TAG ,

(Left-hand side:) THEN transfer to read state RD,
store the tag to RAM TAG at address idx, store the
exclusive bit to RAM MESI at address idx.

III. CACHE COHERENCY PROTOCOL

Caches are fast and comparably small memories
nearby processor cores to provide low-latency data
access and to avoid expensive accesses to main mem-
ory. As caches store copies of data, data consistency
problems arise in case of multiple processors operating
on the same (shared) data.

A cache coherency protocol performs book-keeping
of memory entries loaded and modified by one or more
processor cores in a multiprocessor system. The pro-
tocol aims to secure consistent data exchange between
processor cores and the memory of the system, called
coherency. Dedicated caches are caches dedicated to
and therefore accessed by only a single processor
core while shared caches are accessed by more than
one processor core. In this paper, a cache coherency
protocol for dedicated caches is implemented, where
cache and cache coherency hardware are assigned to a
single processor core. Such assignments of core, cache
and cache coherency protocol are called adjacent in this
paper. The coherency protocol engine is implemented
by a UMA which observes (snoops) the address bus for
memory access activities. A well known algorithm is
the MESI-protocol, where a set of control bits indicates
whether a cache line is modified (M), exclusive (E),
shared (S) or invalid (I).

In this implementation, the UMA has five states. The
idle state ID indicates no load/store operations on the
address bus. The read state RD indicates that a read
operation is performed by the adjacent processor. The
write state WR indicates that the adjacent processor
performs a write operation. The remote read state
rRD indicates that a remote and not the adjacent
processor performs a read operation. The remote write
state rWR indicates that a write operation is performed

37

UNIVERSAL MEMORY AUTOMATON AND AUTOMATED VERILOG HDL
CODE GENERATION FOR A CACHE COHERENCY SNOOPING PROTOCOL

by a remote and not the adjacent processor. Slightly
deviating from the original protocol, cache coherency
status bits M, E, S and I are defined as follows for the
UMA implementation.

A cache line is set to status modified (M), if a write
operation is performed by the adjacent processor on
data associated with the cache line. A cache line is set
to status exclusive (E), if a read operation is performed
by the adjacent processor on data associated with the
cache line. A cache line is set to status shared (S), if
a read operation is performed by a remote processor
on data associated with the cache line. A cache line
is set to status invalid (I), if a write operation is
performed by a remote processor on data associated
with the cache line.

MESI status indications are mutually exclusive and
based on the following two assumptions for dedicated
caches.

First, it is not relevant for data coherency if a
remote processor core keeps a copy of data in its cache
while an adjacent processor reads data from memory.
Processor cores reading data will mark the respective
cache line exclusive (E) while all others, keeping the
cache line as well, will mark it shared (S) at this
moment. Consistency problems occur in case of remote
processors writing on this address and are resolved
by setting all duplicate cache entries in the system to
status invalid (I).

Second, it is not relevant for data coherency if an
adjacent processor core keeps a copy of data in its
cache while a remote processor writes data to memory.
Processor writing data will mark the respective cache
line modified (M) while all others, keeping the cache
line as well, will mark it invalid (I) at this moment.

The two observations make a book-keeping of re-
mote core memory activities obsolete in dedicated
caches and thereby reduce the overhead for the pro-
tocol engine.

For cache entries marked invalid by the coherency
protocol, an invalid is indicated by the output function,
as shown by I=1 in transitions (3.2), (C.2), (14.2) and
(17.2). This supports counting of cache misses as part
of hardware performance analysis. Transitions (1), (F)
and (16) are split into (*.1) and (*.2) to avoid unneces-
sary memory action and thereby save power. If power
consumption is not critical, SET_TAG is performed
regardless of TAG_MATCH, i.e. TAG_MATCH in (*.1)
can be removed and (*.2) dropped completely.

A. Address organization and cache coherency

In computer systems, memory addresses are orga-
nized by page-tag and byte-index, where byte-index
is a defined set of low order address bits to index
bytes in random access memory, and page-tag is the
remaining high-order bits. As every cache line might
store a power of two number of bytes, the number
of bytes in a cache line is given by N = 2b where

0 ≤ b < n. Hence, b = log2N low order index bits
of the memory address might be unused in the cache
address. In case of associative cache organization, a
certain number of low order bits of the tag a are used
to be associated with sets of associative cache memory.

ADDR[n−1 : 0]

TAG a INDEX b

In case of an m-way associative cache, a = log2(m)
low order bits of the tag become part of the cache
address to associate cache blocks. The tag is reduced
by a bits.

tag = ADDR[n− 1 : a + INDEX + b] (14)
idx = ADDR[a + INDEX + b− 1 : b] (15)

One-way associative caches are obtained for a = 0.
For simplicity let a = 0 in this paper so that the cache
is one-way associative.

B. UMA graph for a cache coherency protocol
A refined version of the protocol in [14] has

been implemented in this work. The cache coherency
protocol is implemented by a set of states S =
{ID,RD,WR, rRD, rWR} and an initial state S0 =
ID, named "idle". RD and rRD are states to account
for "read" and "remote read" situations while WR
and rWR are states to indicate "write" and "remote
write" situations. The inputs to decide on situations
are rd, wr, cp, res_n, addr(31 : 0) where rd indicates
read accesses, wr indicates write accesses on address
addr. cp indicates whether the access is performed
by the adjacent core (cp = 1) that the coherency
protocol is accounting for or performed by a remote
core (cp = 0). For this implementation 32-bit ad-
dresses, six index bits idx = addr(7 : 2) and 24
tag bits tag = addr(31 : 8) are used. The protocol
operates on two memories of type RAM, called MESI
and TAG. MESI and TAG are addressed by idx
to store the cache coherency status and address tag
respectively. Figure 2 shows the UMA graph. State
transfer and output expressions are shown in Table IV.
To simplify expressions, the implementation allows the
use of constants (Table III).

IV. AUTOMATED HDL GENERATION OF UMA
GRAPHS

The tools chain is built on an XML-like format to de-
fine the UMA graph for automated Verilog HDL com-
plilation. A later version is supposed to support a visual
graph representation with automatic import and export
function of the shown configuration files. Simple con-
figuration files consist at least of the series of tags,
name, inputs, outputs, states, stateTransfers
(Figure 3). The memory tag is required for PDAs and
UMAs. The expr tag is required to define constant
expressions.

38

MPC-WORKSHOP FEBRUAR 2020

Table I
UMA STATE TRANSFER EXPRESSION FOR A TRANSITION FROM IDLE STATE TO READ STATE.

Comment Expression (to be entered in a single line)

Source state ID,
Condition rd && cp && addr[31 : 8] ! = TOP(TAG, addr(7 : 2)),
Destination state RD,
Output assignment I = 1′b0,
Memory activity PUSH(TAG, addr[7 : 2], addr[31 : 8]) PUSH(MESI, addr[7 : 2], EXCLUSIVE)

IDstart

RD WR

rRD rWR

(1)

(2) (3)

(4)

(5)

(6) (7)

(8)

(9)

(A)

(B) (C)

(D)

(E)

(F)(10)

(11)

(12)(13)

(14)

(15)

(16) (17)

(18) (19)

Figure 2. UMA graph for cache coherency protocol. State transition
conditions are given in Table III and Table IV.

A. Tags definitions

1) name: < name > MESI < /name > defines an
UMA named MESI, which becomes the HDL module
name.

2) inputs: < inputs > clk, res_n, rd, wr, cp,
addr[31 : 0] < /inputs > defines a series of inputs
to be used in expressions, state transfer and output
functions.

3) outputs: < outputs > I < /outputs >
defines an output I to indicate an invalid situation,
where a cache entry is marked invalid in case of a
remote write access on a memory location accounted
by the protocol.

4) states: < states > ID(100), RD(000),
WR(001), rRD(010), rWR(011) < /states > defines
a set of states with manual encoding.

5) stateTransfers: < stateTransfers > state
transitions < /stateTransfers > defines the
state transfer function by a series of state transitions,
line by line.

6) state transitions: Each state transition is
defined by a single line with expression of the form

source state, condition, destination state,

output assignment, memory activity

<name> MESI </name>
<type> UMA, Mealy </type>
<inputs> clk,res_n,rd,wr,cp,addr[31:0] </inputs>
<outputs> I </outputs>
<triggeredge> posedge clk,negedge res_n </triggeredge>
<stateCoding> man </stateCoding>
<states> ID(100), RD(000), WR(001), rRD(010), rWR(011) </states>
<memory>
TAG,ram,24,64; // 64 entries, 24 bit each
MESI,ram,4,64; // 64 entries, 4 bit each
</memory>

Figure 3. UMA configuration file (header section) for a cache
coherency protocol.

Table II
UMA MEMORY CONFIGURATIONS FOR THE CACHE COHERENCY

PROTOCOL.

memory memory memory memory
name type width depth

TAG ram 24 64
MESI ram 4 64

where src is a source state, condition is a boolean
expression containing l-fold memory read opera-
tions, i.e. X l

−. dst is the destination state and
output assignment is an assignment to one or more
outputs. Memory activity indicates m-fold memory
write operations, i.e. Xm

+ . An example state transition
corresponding to the expression in eq. 13 is shown in
Table I. There, a memory named TAG of type ram is
defined. TAG has a width of 12 bits and sixteen entries,
i.e. the address width is four bits.

7) memory: < memory >memory definitions
< /memory > defines a series of memories.

8) memory definitions: A memory is defined by a
line with an expression of the form

memory name, memory type, width, depth

where memory name is the name of the memory,
here TAG and MESI . Memory type is cam, ram,
queue or stack. Depth is the number of bits per
memory entry and number is the number of entries.
The address width is determined automatically from
the log2 of the number of entries. An example memory
configuration is shown in Table II.

9) expr tag: < expr > constant expression
definitions < /expr > defines a constant expression
to be used in state transfer and output expressions.

10) constant expression definitions: Constant ex-
pression can be used to easily avoid large expressions

39

UNIVERSAL MEMORY AUTOMATON AND AUTOMATED VERILOG HDL
CODE GENERATION FOR A CACHE COHERENCY SNOOPING PROTOCOL

RAM #(4,64) MESI_RAM(.clk(MESI_RAM_clk), .res_n(MESI_RAM_res),
.wr(MESI_RAM_wr), .wr_addr(MESI_RAM_wr_addr[5:0]), .wr_data(MESI_RAM_wr_data[3:0]),
.rd(MESI_RAM_rd), .rd_addr(MESI_RAM_rd_addr[5:0]), .rd_data(MESI_RAM_rd_data[3:0]));

wire READ; assign READ = res_n & cp & rd;
wire TAG_MATCH; assign TAG_MATCH = POP_TAG_RAM(addr[7:2])==addr[31:8];

always @(*) begin
case (STATE)
ID : begin

READ & ˜ TAG_MATCH) begin
NEXT_STATE <= RD;
TAG_RAM_status <= PUSH_TAG_RAM(addr[7:2],addr[31:8]);
MESI_RAM_status <= PUSH_MESI_RAM(addr[7:2],EXCLUSIVE);

end ...

Figure 4. Auto-generated Verilog HDL for memory instantiation and the state transition shown in Table I

Table III
EXPRESSION CONSTANTS FOR THE CACHE CONHERENCY

PROTOCOL SHOWN IN TABLE IV ON PAGE 41.

Constant Expression

READ = res_n & cpu & rd
WRITE = res_n & cpu & wr
R_READ = res_n & !cpu & rd
R_WRITE = res_n & !cpu & wr

NOP = !res_n || (!rd & !wr)
TAG_MATCH = TOP(R,addr(7:2))==addr(31:8))

IS_MODIFIED = TOP(MESI,addr(7:2))==4’b1000)
IS_EXCLUSIVE = TOP(MESI,addr(7:2))==4’b0100)

IS_SHARED = TOP(MESI,addr(7:2))==4’b0010)
IS_INVALID = TOP(MESI,addr(7:2))==4’b0001)

SET_TAG = PUSH(R,addr(7:2),addr(31:8))
SET_MODIFIED = PUSH(MESI,addr(7:2),4’b1000)
SET_EXCLUSIVE = PUSH(MESI,addr(7:2),4’b0100)

SET_SHARED = PUSH(MESI,addr(7:2),4’b0010)
SET_INVALID = PUSH(MESI,addr(7:2),4’b0001)

in state transfers, in particular when complex memory
operations are involved. A constant expression is de-
fined by a line of the form constant = expression.
The constant expressions used in the cache coherency
protocol are shown in Table III.

11) Others: Other tags are for example type to
choose between uma, pda, or fsm and architectures
mealy, moore and smoore. TriggerEdge is used to
configure a positive (pos) or negative (neg) clock edge,
stateCoding to select manual, one-hot or gray encod-
ing. These types of tags are defaulted automatically if
unused or otherwise contained in the header section of
a UMA definition file as shown in Figure 3.

B. HDL generation

Boolean logic for state transfer, output functions and
memory instances are compiled at Register Transfer
Level (RTL) with Verilog HDL. The entire protocol
including testbench is derived from a 140 lines config-
uration file.

The Cache Coherency Protocol for the finite state
graph shown in Figure 2 instantiates two memories of
type ram, named TAG and MESI, each with 64 entries,
addressed by 6 address bits, i.e. index = addr(7 : 2).
Every cache line is 32 bits wide and thereby stores
four bytes so that the b-field of the address is 2 bits
wide, i.e. index(1 : 0). Memory TAG stores the 24 bits
wide address tag addr(31 : 8) and memory MESI stores

one-hot encoded coherency settings for cache lines
addressed by index(7 : 2), i.e. Modified, Exclusive,
Shared and Invalid.

C. Module interface

The module interface is derived from the header
section shown in Figure 3. Name, inputs and output
definitions are used straight forward in the module
interface.

D. Memory instantiation

Memories are instantiated as defined in the configu-
ration file. The code fragments in Figure 4 shows the
definition and instantiation of the RAM MESI and
the state transition discussed in Table I.

E. State transfer with memory read and output func-
tion with write access

State transfers are derived from the
< stateTransfers > tag as shown Table I.
Verilog code is compiled as shown in Figure 4, where
the state transfer function is built on a case statement
encapsulated in an always block. There, the current
state is evaluated and the state transitions shown in
the UMA graph (Figure 2) provide the expressions
for the state transition logic (Table IV).

1) Example: In Table I and arc 1.1 in Table IV:
IF the protocol engine is in state idle (ID), a
read operation occurs and the corresponding read
access to the TAG RAM causes a tag match, i.e.
(READ & TAG_MATCH), THEN the UMA transfers to
read state (RD) and a write access is performed to
change the coherency status of the cache entry to
Exclusive when the read state is reached. This complex
operation is defined by a single state transfer. The
corresponding waveform is shown in Figure 5.

F. Output function

Outputs are set according to the state and state
transfer conditions in the case statement in case of a
Mealy architecture and in a separate case statement
and according to the state only in case of a Moore or
Simple Moore architecture.

40

MPC-WORKSHOP FEBRUAR 2020

Table IV
STATE TRANSITION DEFINITIONS FOR THE GRAPH REPRESENTATION OF THE CACHE COHERENCY PROTOCOL IN FIGURE 2.

EXPRESSION CONSTANTS ARE DEFINED IN TABLE III ON PAGE 40.

Arc SRC State Condition TGT State Output Memory operation

(start,2,4,6,8,15) * NOP ID
(1.1) ID READ & TAG_MATCH, RD, , SET_EXCLUSIVE
(1.2) ID READ & !TAG_MATCH, RD, , SET_TAG SET_EXCLUSIVE
(3.1) ID WRITE & TAG_MATCH & !IS_INVALID, WR, , SET_MODIFIED
(3.2) ID WRITE & TAG_MATCH & IS_INVALID, WR, I=1,

(5) ID R_READ & TAG_MATCH, rRD, , SET_SHARED
(7) ID R_WRITE & TAG_MATCH, rWR, , SET_INVALID
(9) RD WRITE & TAG_MATCH, WR, , SET_MODIFIED
(A) WR READ & TAG_MATCH, RD, , SET_EXCLUSIVE
(B) WR READ & TAG_MATCH, rWR, , SET_INVALID

(C.1) rWR WRITE & TAG_MATCH & !IS_INVALID, WR, , SET_MODIFIED
(C.2) rWR WRITE & TAG_MATCH & IS_INVALID, WR, I=1,

(D) rWR R_READ & TAG_MATCH & IS_MODIFIED, rRD, , SET_SHARED
(E) rRD R_WRITE & TAG_MATCH, rWR, , SET_INVALID

(F.1) rRD READ & TAG_MATCH, RD, , SET_EXCLUSIVE
(F.2) rRD READ & !TAG_MATCH, RD, , SET_TAG SET_EXCLUSIVE
(10) RD R_READ & TAG_MATCH, rRD, , SET_SHARED
(11) RD R_WRITE & TAG_MATCH, rWR, , SET_INVALID

(12.1) rWR READ & TAG_MATCH, RD, , SET_EXCLUSIVE
(12.2) rWR READ & !TAG_MATCH, RD, , SET_TAG SET_EXCLUSIVE

(13) WR R_READ & TAG_MATCH, rRD, , SET_SHARED
(14.1) rRD WRITE & TAG_MATCH & !IS_INVALID, WR, , SET_MODIFIED
(14.2) rRD WRITE & TAG_MATCH & IS_INVALID, WR, I=1,
(16.1) RD READ & TAG_MATCH, RD, , SET_EXCLUSIVE
(16.2) RD READ & !TAG_MATCH, RD, , SET_TAG SET_EXCLUSIVE
(17.1) WR WRITE & TAG_MATCH & !IS_INVALID, WR, , SET_MODIFIED
(17.2) WR WRITE & TAG_MATCH & IS_INVALID, WR, I=1,

(18) rRD R_READ & TAG_MATCH, rRD, , SET_SHARED
(19) rWR R_WRITE & TAG_MATCH, rWR, , SET_INVALID

Figure 5. Read access of own CPU (cp = rd = 1) causing a TAG to be stored in TAG_RAM and coherency status ’exclusive’, i.e. 0100,
into MESI_RAM.

41

UNIVERSAL MEMORY AUTOMATON AND AUTOMATED VERILOG HDL
CODE GENERATION FOR A CACHE COHERENCY SNOOPING PROTOCOL

V. CONCLUSIONS

Universal Memory Automata (UMA) provide a for-
malism for using complex memory configurations and
operations in finite state graphs. Compared to Push
Down Automata (PDA), where only a stack and state
memory are utilized or Finite State Machine (FSM),
where only a state memory is utilized, Universal Mem-
ory Automata (UMA) extend these concepts by addi-
tional memory organizations, e.g. Queue, RAM and
CAM. UMAs allow an arbitrary set and configuration
of memories to be operated at the same time, where
complex and multiple read/write memory operations
are included in the state transfer and output functions.
This feature does not enable UMAs to process another
class of languages in the Chomsky Hierarchy but it
makes them more flexible and intuitively applicable
than PDAs and FSMs when implementing complex
applications. With only 140 lines of parametrized con-
figuration, a complex and adaptable Cache Coherency
Protocol including test-bench is automatically imple-
mented in the Hardware Description Language (HDL)
Verilog at Register Transfer Level (RTL). The proposed
theory is in general applicable to all types of memories
within the state transfer cycle alignments, i.e. single-
cycle read/write access. This shows the potential of
Universal Memory Automata (UMAs) and provides the
possibility for further extensions.

REFERENCES

[1] T.L. Booth. 1962. Sequential Machines and Automata Theory
(1st ed.). Number 67-25924. John Wiley and Sons, Inc., New
York. Library of Congress Card Catalog.

[2] J. Carroll and D. Long. 1989. Theory of Finite Automata with
an introduction to Formal Languages. Prentice Hall.

[3] A. Gill. 1962. Introduction to the Theory of Finite-state Ma-
chines. McGraw-Hill.

[4] J.E. Hopcroft and J.D. Ullman. 1979. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, MA.
ISBN 0-201-02988-X.

[5] L. Boasson, J.-M. Autebert, J. Berstel. 1997. Context-Free
Languages and Push-Down-Automata. Vol. 1. Springer-Verlag.
111-174.

[6] J.D. Ullman, J.E. Hopcroft. 1967. “Nonerasing Stack Au-
tomata”. Journal of Computer System Sciences 1 (1967), 166–
186. https://doi.org/10.1016/s0022-0000(67)80013-8.

[7] E.J. McCluskey. 1965. Introduction to the Theory of Switch-
ing Circuits (1st ed.). McCraw-Hill, New York. Library of
Congress Card Catalog.

[8] M. Minski. 1967. Computation: Finite and infinite Machines
(1st ed.). Prentice-Hall, New Jersey.

[9] L.J Stockmeyer, R.E. Ladner, R.J. Lipton . 1984. “Stack
Automata and Compiling”. SIAM J. Comput. 13, (1984), 135–
155. ISSN 0097-5397. https://doi.org/10.1137/0213010.

[10] M.A. Harrison, S. Ginsburg, S.A. Greibach. 1967. “One-way
Stack Automata”. J. ACM 14, 1 (1967), 389–418. https://doi.
org/10.1145/321386.321403

[11] M.A. Harrison, S. Ginsburg, S.A. Greibach. 1967. “Stack
Automata and Compiling”. J. ACM 14, 1 (1967), 172–201.
https://doi.org/10.1145/321371.321385.

[12] S. Seshu. 1963. “Introduction to the theory of finite-state
machines”. Proc. IEEE 51, 9, Sep. 1963, 1275–1275. ISSN
0018-9219. https://doi.org/10.1109/PROC.1963.2548.

[13] M. Snipser. 1997. Introduction to the Theory of Computation.
PWS Publishing. ISBN 0-534-94728-X. Section 2.2: Pushdown
Automata, pp. 101-114.

[14] P. Zyska. 2018. Implementation of a cache coherency protocol
with extended Push Down Automata. Bachelor Thesis, HTWG
Konstanz, University of Applied Sciences.

Matthias W. Fertig received his academic
degree Dipl. Inf. (MSCE) from the Univer-
sity of Mannheim in 2001. From 2003 to
2011 he worked at the IBM Research and
Development GmbH in Böblingen, Ger-
many, in the field of microprocessor design
for IBM P- and Z-Servers. He holds patents
in the field of computer architecture and
silicon photonics and is a recipient of sev-
eral IBM innovation and plateau awards.
In 2011 he received a Dr. rer. nat. (PhD)

for his research on electromagnetic simulation at the department of
Optoelectronics of Heidelberg University. From 2011 to 2015 he
worked as a project manager for Dialog Semiconductor and as a
CPM for Volvo CE. Since 2015 he has been a professor of computer
engineering and holds the professorship for digital systems at the
Konstanz University of Applied Sciences.

42

https://doi.org/10.1016/s0022-0000(67)80013-8
https://doi.org/10.1137/0213010
https://doi.org/10.1145/321386.321403
https://doi.org/10.1145/321386.321403
https://doi.org/10.1145/321371.321385
https://doi.org/10.1109/PROC.1963.2548

	Introduction
	Finite State Machines
	Push Down Automata
	Stack alphabet

	The Universal Memory Automaton
	Types of memory
	State memory
	Last-In First Out (Stack)
	First-In First Out (Queue)
	Random-Access Memory (RAM)
	Content-Addressable Memory (CAM)

	n-dimensional memory operations
	Example of three-dimensional memory operations in state transfers

	Cache Coherency Protocol
	Address organization and cache coherency
	UMA graph for a cache coherency protocol

	Automated HDL generation of UMA graphs
	Tags definitions
	name
	inputs
	outputs
	states
	stateTransfers
	state transitions
	memory
	memory definitions
	expr tag
	constant expression definitions
	Others

	HDL generation
	Module interface
	Memory instantiation
	State transfer with memory read and output function with write access
	Example

	Output function

	Conclusions
	References
	Biographies
	Matthias W. Fertig

