The Vector Wave Propagation Method - VWPM

An extension to the scalar wave propagation method - examples and correlation to RCWA
Matthias Fertig et. al.
The scalar wave propagation method (WPM) [1] has removed the limitations of the beam propagation method (BPM) but does not consider full threedimensional vector fields. The vector wave propagation method (VWPM) extends the range of applications to systems which strongly depend on the polarization of the wave (i.e. large aperture lenses or high frequency diffractive gratings). The new approach is valid for propagation angles up to 85 degrees and utilizes the Fresnel coefficients at system boundaries.

Given: system $\mathcal{N} \in \mathcal{C}^{N_{x} \times N_{y} \times N_{z}}$ with refractive index $\quad \hat{n}_{m}=n_{m}\left(\mathbf{r}_{\perp}, z_{m}\right)+i \kappa_{m}\left(\mathbf{r}_{\perp}, z_{m}\right)$ in the $\mathrm{m}^{\text {th }}$ layer

Result: field distribution $\mathrm{E}^{(3)}(\mathrm{r})$

Theory:

1.Plane wave decomposition

$$
\tilde{\mathbf{E}}_{\perp, m}\left(\mathbf{k}_{\perp}\right)=\iint \mathbf{E}_{\perp, m}\left(\mathbf{r}_{\perp}\right) \cdot \exp \left(-i \mathbf{k}_{\perp} \mathbf{r}_{\perp}\right) d^{2} \mathbf{r}_{\perp}
$$

2.Transfer at interface

$$
\tilde{\mathbf{E}}_{\perp, m+1}\left(\mathbf{k}_{\perp}\right)=\mathbf{M}_{m, m+1}\left(\mathbf{r}_{\perp}, \mathbf{k}_{\perp}\right) \cdot \tilde{\mathbf{E}}_{\perp, m}\left(\mathbf{k}_{\perp}\right)
$$

3. Propagation inside the inhomogeneous layer

$$
\boldsymbol{\varepsilon}_{\perp, m+1}\left(\mathbf{r}_{\perp}, \mathbf{k}_{\perp}\right)=\tilde{\mathbf{E}}_{\perp, m+1}\left(\mathbf{k}_{\perp}\right) \cdot \exp \left(i \phi_{m+1}\left(\mathbf{r}_{\perp}, \mathbf{k}_{\perp}\right)\right)
$$

$$
\boldsymbol{\varepsilon}_{z}=-\frac{\left(\varepsilon_{x} k_{x}+\varepsilon_{y} k_{y}\right)}{k_{z}} \quad \text { Transversality }
$$

4. Summation

$$
\mathbf{E}_{m+1}\left(\mathbf{r}_{\perp}\right)=\iint \varepsilon_{m+1}\left(\mathbf{r}_{\perp} \mathbf{k}_{\perp}\right) \cdot \exp \left(i \mathbf{k}_{\perp} \mathbf{r}_{\perp}\right) \frac{d^{2} \mathbf{k}_{\perp}}{(2 \pi)^{2}}
$$

Transfer-Matrix with Fresnel coeff. t_{s}, t_{p} :

$$
\begin{aligned}
& \mathbf{M}_{m, m+1}=\frac{1}{k_{\perp}^{2}}\left(\begin{array}{cc}
k_{y}^{2} t_{s}+k_{x}^{2} \hat{t}_{p} & k_{x} k_{y}\left(\hat{t}_{p}-t_{s}\right) \\
k_{x} k_{y}\left(\hat{t}_{p}-t_{s}\right) & k_{x}^{2} t_{s}+k_{y}^{2} \hat{t}_{p}
\end{array}\right) \\
& \hat{t}_{p}=\frac{n_{m} k_{z, m+1}}{n_{m+1} k_{z, m}} t_{p}
\end{aligned}
$$

Propagation phase :

$$
\phi_{m}\left(\mathbf{r}_{\perp}, \mathbf{k}_{\perp}\right)=d z \sqrt{n_{m}\left(\mathbf{r}_{\perp}\right)^{2} k_{0}^{2}-k_{\perp}^{2}}
$$

1. 2D simulation of a prism - traversed by a TE-polarized plane wave

Prism scene: imaginary part of refractive index is zero.

Gaussian beam

1.a. VBPM: increasing amplitude inside the prism

1.c. VBPM: propagated amplitude
 amplitude inside prism. theory and is thus

Fresnel coefficients The VBPM uses the averaged refractive averaged refractive
index and therefore index and therefore
shows an increasing shows an increasing amplitude inside the of the VWPM deviates 4\% from amplitude inside prism. times as accurate.

3.c. Complexity

 RCWA: O(N $\left.{ }^{4}\right)$ VWPM: $\mathrm{O}\left(\mathrm{N}^{2}\right)$ BPM: $\quad \mathrm{O}(\mathrm{N} \log (\mathrm{N}))$2. 3D simulation of an asphere - traversed by a x-polarized plane wave Vectorial Debye-Theory

Poynting vector and intensity

The local distribution of the intensity is derived from the electric field.
The magnetic field vector follows from Maxwell

$$
\tilde{\mathbf{H}}=\sqrt{\frac{\epsilon \epsilon_{0}}{\mu \mu_{0}}}\left(\frac{\mathbf{k}}{k} \times \mathbf{E}\right)
$$

Three-dimensional magnetic vector derived from transversal components of the electric field
$\tilde{\mathbf{H}}^{(3)}\left(\mathbf{r}_{\perp}, \mathbf{k}\right)=\mathbf{T}\left(\mathbf{r}_{\perp}, \mathbf{k}\right) \cdot \tilde{\mathbf{E}}_{\perp}$

$$
\mathrm{T}\left(\mathrm{r}_{\perp}, \mathrm{k}\right)=\frac{1}{k \cdot k_{z}} \cdot \sqrt{\frac{\epsilon \epsilon_{0}}{\mu \mu_{0}}}\left(\begin{array}{cc}
-k_{x} k_{y} & -\left(k^{2}-k_{x}^{2}\right) \\
\left(k^{2}-k_{y}^{2}\right) & k_{x} k_{y} \\
-k_{y} k_{z} & k_{x} k_{z}
\end{array}\right)
$$

The summation of the magnetic wave components over the aperture yields the distribution of the magnetic field in the aperture and the Poynting vector is then

$$
\mathbf{S}=\frac{1}{2} \operatorname{Re}\left(\mathbf{E}^{(3)}(\mathbf{r}) \times \mathbf{H}^{(3) *}(\mathbf{r})\right)
$$

The local intensity is

Conclusion: The VWPM enables calculation of the propagation of a vector wave through an inhomogeneous three-dimensional system. The simulations show that the method is accurate also for non-paraxial propagation and is not limited to small index variations. Apart from reflections, the VWPM is exact. The computational effort is significantly smaller than rigorous methods and the VWPM provides efficient ways for parallelization. In homogeneous regions the VWPM agrees fully with the vector plane wave decomposition, which has been used for speed-up.
[1] K.-H. Brenner and W. Singer, Light propagation through microlens: a new simulation method in Applied Optics 32, (1993), 4984.4988.
[2] M. Feit, J. Fleck, Light propagation in graded index fibres, in Applied Optics, (1978), 3390-3998.

Contact:

Prof. Dr. Matthias Fertig
matthias.fertig@htwg-konstanz.de
Braunegger Straße 55
78462 Konstanz

