The Vector Wave Propagation Methoa VWPM

An extension to the scalar wave propagation metl@emples and correlation to RCWA
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The scalar wave propagation method (WPM) [1] hasoreed the lintations of the beam propagation method (BPM) m#sdnot consider full three
dimensional vector fields. The vector wave propagamethod (WPM) extends the range of applications to systemslwstronglydepend on the

polarization of the wave (i.e. large aperture lensehigh frguency diffractive gratings). The new approachabavfor pro@mgation angles up to 85
degrees and utilizes the Fresnel coefficients daesy®oundaries.
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1.Plane wave decomposition

{5b) Fresnelcoefficients for T™M mode

2. Transfer at interface
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3. Propagation inside the inhomogeneous layer 0
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1. 2D simulation of a prism - traversed by a TEpolarized plane wave 2. 3D simulation of an asphere traversed by a xpolarized plane wave
) Vectorlal Debye -Theory
~of the VWPM

' Fresnel coefficients | =™ 5
. The VBPM uses the I

1 o T e deviates 4% from VWPM
Prism sceneimaginary 1.a. VBPM:increasing 1. b VWPI\/I constanttheory and Is thus 10 )

= averaged refractive
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part of refractive index is amplitude inside the prism. amplitude inside prism. times as accurate.

Zero.

. 2.a. Vector field verification
I I from vectorial Debye theory

Vectorial Debye- ntegral'

- shows an increasing
o amplitude inside the
_prism. The amplitude

E(r,) = —EDE” fM e

2.b. Vector field components
simulated with the VWPM. The
simulation shows an acceptable
match of the amplitude In the
focus of a perfect asphere.
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2.C. X-z-Section

The VWPM shows a diffraction
limited, unaberrated spot, as
expected from a perfect aspheric
focussing lens (left). The focus
location agrees perfectly with
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3. Simulation of a grating Poyntmg vector and |ntenS|ty
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Conclusion: The VWPM enables calculation of the propagationaolector wae through an inhomogeneous thomensional system. The
simulations show that the method Is accurate @soadnparaxial propagation and is not limited to smadlex variatios. Apart from reflections, the
VWPM Is exact. The computational effort is sigraiitly smaller than rigorous methods and the VWPMipies efficient ways for parallelization. In
homogeneous regions the VWPM agrees fully withvngor plane wave decomposition, which has beeda fmsespeeelip.
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