Session 4

Exercise 1: Focal length

Given that the focal length of a lens n in air $n_{a}=1$ is f. Show that the focal length of the same lens in water n_{w} is

$$
f_{w}=\frac{n_{w}(n-1)}{n_{w}-n} f
$$

Hints: Use the formula for f_{o} given in the course material.

Exercise 2: Magnification

To obtain a magnification M, the object distance s_{o} needs to be

$$
s_{o}=\frac{M+1}{M} f
$$

a) Derive the equation.
b) A camera with a 50 mm focal length is used to photograph a person 1.75 m tall. Derive the object distance s_{o} to get an image of size 24 mm .

Hint: Use the imaging law and let $s_{i}=-M s_{o}$.

Exercise 3: Focal point and refractive index

a) Show that a change in the refractive index $d n$ induces a change in the focal point $d f$ described by the relation

$$
\frac{d f}{f}=-\frac{d n}{n-1}
$$

b) Use the relation to calculate the focal length of a lens for blue light ($n=$ 1.53), if 20 cm is the focal length for red light $n=1.47$.

Hint: Use the formula for the focal point of thin lenses and perform the first derivative of $d f / d n$. Then rearrange the terms.

Exercise 4: Mirror Formula

Show that a convex mirror cannot create a real image.
Hints: Use the Mirror Formula from the course material and show that the image distance is negative if the object distance is positive.

Exercise 5: Fermats principle and Gaussian Optics

The expression

$$
\frac{n_{1}}{l_{o}}+\frac{n_{2}}{l_{i}}=\frac{1}{R}\left(\frac{n_{2} s_{i}}{l_{i}}-\frac{n_{1} s_{o}}{l_{o}}\right)
$$

is obtained from Fermats Principle, i.e. $d O P L / d \phi=0$.
a) Show that the expression is obtained from $O P L=n_{1} l_{o}(\phi)+n_{2} l_{i}(\phi)$
b) Show that for small angles, where $l_{i} \approx s_{i}$ and $l_{o} \approx s_{o}$, the expression

$$
\frac{n_{1}}{l_{o}}+\frac{n_{2}}{l_{i}}=\frac{n_{2}-n_{1}}{R}
$$

for Gaussian Optics is obtained.
Hints: Script modul 4 pages 11-14.

Exercise 6: MATLAB exercise:
 ABCD-matrix

Use the ABCD-matrix for the following exercises.
a) Write a set of Matlab functions to return the ABCD-matrix for
a.1) propagation through homogeneous medium
a.2) transformation of rays at plane interfaces
with a refractive index $n i$ and $n t$
a.3) transformation of rays at spherical interfaces
with a radius R and a refractive index $n i$ and $n t$
a.4) transformation of rays through thin plane-convex lenses
with a radius R and a refractive index $n l$ and $n m$
a.5) transformation of rays through thick lenses
with a radius $R l, R r$ and a thickness D.
b) Write a Matlab program to plot the transformation of rays at a plane interface. Calculate the deviation in the paraxial approximation $\tan \theta=\theta$ in percent?
c) Referring to the results in b), up to what angle of incidence is the deviation in the paraxial approximation below three percent for $n i=1$ and $n t=3.4$? Get the result from simulations and give the analytic term.
d) Referring to the results in c), how would the deviation change for $n i=3.4$ and $n t=1$?
e) Extend the Matlab program to show the propagation for a configurable set of parallel rays through a thin lens with focal length $f=5 \mathrm{~cm}$. Show by simulation how the image point shifts in the focal plane for a variation of the angle of incidence and how an image point is formed from object points.

