Session 1

Exercise 1: Phase difference

Given are two coherent sources of microwaves with a wavelength 1.5 cm . The sources are positioned in the $x y$ plane at locations $\left(x_{1}, y_{1}\right)=(0,15) \mathrm{cm}$ and $\left(x_{2}, y_{2}\right)=(3,14) \mathrm{cm}$. The sources are in phase. Derive the phase difference of the two sources in the origin $\left(x_{0}, y_{0}\right)=(0,0)$ in degrees and in radians.

Hints: Use vector geometry to get $(\triangle x, \Delta y)$ and then derive the phase difference.

Exercise 2: Transversality

Given an electromagnetic plane wave. Show that the vectors \mathbf{B} and \mathbf{k} are perpendicular.

Hints: Use the harmonic plane wave solution for an electromagnetic wave and the 4th Maxwell equation.

Exercise 3: Wave equation

Derive the vector wave equation in homogeneous, linear and isotropic, nonconducting and soucre-free medium from the Maxwell equations. Assume that no currents \mathbf{J} are present.

Hints: Insert the rotation of one Maxwell equation into another and then use the vector identities $\nabla \times a \mathbf{x}=a(\nabla \times \mathbf{x})+(\operatorname{grad} a) \times \mathbf{x}$ and $\nabla \times \nabla \times \mathbf{x}=$ $\operatorname{grad}(\nabla \cdot \mathbf{x})-\nabla^{2} \mathbf{x}$. Finally remove terms from the conditions given in the exercise.

Exercise 4: Three-dimensional partial differential vector wave equation

Show that a harmonic plane vector wave is a solution of the vector wave equation.

Hints: Insert the complex exponential equation shown in the course material into the partial differential vector wave equation.

