Introduction

Exercise 1: Vector Analysis

In a coordinate system of your choice, prove that
a) $\nabla \times \nabla \cdot S=\mathbf{0}$
b) $\nabla \cdot \nabla \times \mathbf{F}=0$
where S and \mathbf{F} are scalar and vector fields, respectively.

Exercise 2: Vector Analysis

In a coordinate system of your choice, prove that
a) $\nabla \times(S \cdot \mathbf{F})=\frac{1}{2}(S \cdot(\nabla \times \mathbf{F})+(\operatorname{grad} S) \times \mathbf{F})$
b) $\nabla \times \nabla \times \mathbf{F}=\operatorname{grad}(\nabla \cdot \mathbf{F})-\nabla^{2} \mathbf{F}$
where S and \mathbf{F} are scalar and vector fields, respectively.

Exercise 3: Vector Analysis

If U and V are scalar fields and $\operatorname{div}(U V)=0$, show that

$$
\oint_{C} U \nabla V d \mathbf{r}=-\oint_{C} V \nabla U d \mathbf{r}
$$

Exercise 4: Units

Show that

$$
\left[\frac{N}{A m}=\frac{V s}{m^{2}}\right]
$$

and

$$
\left[\frac{N}{V m}=\frac{A s}{m^{2}}\right]
$$

and rewrite the table in the table on page 7 , module 1 .
What do you observe when comparing the quantities?

Exercise 5: Units

Show by analysis of units how

$$
\epsilon_{0} \mu_{0}
$$

relates to a velocity, i.e. $\left[\frac{m}{s}\right]$.
What speed would you expect this to be?
How do the relative permittivity and permeability affect the speed?

Exercise 6: Fizeau's experiment

Given the Fizeau experiment shown in the course material. The wheel has a number of 720 tooth and the mirror is positioned at a distance of $d=8.63 \mathrm{~km}$. The light source is pulsed by the toothed wheel and the reflected pulse reaches the observer through the semi-transparent mirror at $25.3\left[\mathrm{~s}^{-1}\right]$ rotations per second.
a) Derive the speed of light.
b) What is the deviation to the exact value in percent.

